cAMP−EPAC−PKCε−RIM1α signaling regulates presynaptic long-term potentiation and motor learning

  1. Xin-Tai Wang
  2. Lin Zhou
  3. Bin-Bin Dong
  4. Fang-Xiao Xu
  5. De-Juan Wang
  6. En-Wei Shen
  7. Xin-Yu Cai
  8. Yin Wang
  9. Na Wang
  10. Sheng-Jian Ji
  11. Wei Chen
  12. Martijn Schonewille
  13. J Julius Zhu  Is a corresponding author
  14. Chris I De Zeeuw  Is a corresponding author
  15. Ying Shen  Is a corresponding author
  1. Zhejiang University, China
  2. Ningxia Medical University, China
  3. Southern University of Science and Technology, China
  4. Erasmus MC, Netherlands
  5. University of Virginia, United States

Abstract

The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP−EPAC−PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A−RIM1α−Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC−PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1, 2, and Figure 1-figure supplement 2, 3, and 4.

Article and author information

Author details

  1. Xin-Tai Wang

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lin Zhou

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bin-Bin Dong

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Fang-Xiao Xu

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. De-Juan Wang

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. En-Wei Shen

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin-Yu Cai

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yin Wang

    Department of Physiology, Ningxia Medical University, Yinchuan, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Na Wang

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1438-1508
  10. Sheng-Jian Ji

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3380-258X
  11. Wei Chen

    Department of Physiology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Martijn Schonewille

    Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2675-1393
  13. J Julius Zhu

    Department of Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    jjzhu@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1879-983X
  14. Chris I De Zeeuw

    Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
    For correspondence
    c.dezeeuw@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5628-8187
  15. Ying Shen

    Department of Physiology, Zhejiang University, Hangzhou, China
    For correspondence
    yshen@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7034-5328

Funding

National Innovation of Science and Technology-2030 (2021ZD0204000)

  • Ying Shen

Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20160331115633182)

  • Sheng-Jian Ji

Science and Technology Programme of Hangzhou Municipality (20190101A10)

  • Wei Chen

Key Realm R&D Program of Guangdong Province (2019B030335001)

  • Wei Chen

Ningxia Key Research and Development Program (2021BEG03097)

  • Yin Wang

Natural Science Foundation of Zhejiang Province (LQ17C090001)

  • Na Wang

ERC-Stg (680235)

  • Martijn Schonewille

Dutch Organization for Medical Sciences

  • Chris I De Zeeuw

Dutch Organization for Life Sciences

  • Chris I De Zeeuw

ERC-adv and ERC-POC of the EU

  • Chris I De Zeeuw

INTENSE

  • Chris I De Zeeuw

National Natural Science Foundation of China (81625006)

  • Ying Shen

NIN Vriendenfonds for albinism

  • Chris I De Zeeuw

National Natural Science Foundation of China (31820103005)

  • Ying Shen

National Natural Science Foundation of China (32000692)

  • Xin-Tai Wang

National Natural Science Foundation of China (32160192)

  • Yin Wang

National Natural Science Foundation of China (32100791)

  • Fang-Xiao Xu

National Natural Science Foundation of China (31900741)

  • Lin Zhou

National Natural Science Foundation of China (32170976)

  • Lin Zhou

National Key Research and Development Program of China (2020YFB1313500)

  • Lin Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved protocol of the Animal Experimentation Ethics Committee of Zhejiang University (ZJU17067).

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 962
    views
  • 216
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin-Tai Wang
  2. Lin Zhou
  3. Bin-Bin Dong
  4. Fang-Xiao Xu
  5. De-Juan Wang
  6. En-Wei Shen
  7. Xin-Yu Cai
  8. Yin Wang
  9. Na Wang
  10. Sheng-Jian Ji
  11. Wei Chen
  12. Martijn Schonewille
  13. J Julius Zhu
  14. Chris I De Zeeuw
  15. Ying Shen
(2023)
cAMP−EPAC−PKCε−RIM1α signaling regulates presynaptic long-term potentiation and motor learning
eLife 12:e80875.
https://doi.org/10.7554/eLife.80875

Share this article

https://doi.org/10.7554/eLife.80875

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article Updated

    Most nervous systems combine both transmitter-mediated and direct cell–cell communication, known as ‘chemical’ and ‘electrical’ synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a ‘gap junction’ (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact’s surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.