A DARPin-based molecular toolset to probe gephyrin and inhibitory synapse biology

Abstract

Neuroscience currently requires the use of antibodies to study synaptic proteins, where antibody binding is used as a correlate to define the presence, plasticity, and regulation of synapses. Gephyrin is an inhibitory synaptic scaffolding protein used to mark GABAergic and glycinergic postsynaptic sites. Despite the importance of gephyrin in modulating inhibitory transmission, its study is currently limited by the tractability of available reagents. Designed Ankyrin Repeat Proteins (DARPins) are a class of synthetic protein binder derived from diverse libraries by in vitro selection, and tested by high-throughput screening to produce specific binders. In order to generate a functionally diverse toolset for studying inhibitory synapses, we screened a DARPin library against gephyrin mutants representing both phosphorylated and dephosphorylated states. We validated the robust use of anti-gephyrin DARPin clones for morphological identification of gephyrin clusters in rat neuron culture and mouse brain tissue, discovering previously overlooked clusters. This DARPin-based toolset includes clones with heterogenous gephyrin binding modes that allowed for identification of the most extensive gephyrin interactome to date, and defined novel classes of putative interactors, creating a framework for understanding gephyrin's non-synaptic functions. This study demonstrates anti-gephyrin DARPins as a versatile platform for studying inhibitory synapses in an unprecedented manner.

Data availability

All relevant mass spectrometry data has been deposited to the ProteomeXchange Consortium via the PRIDE (http://www.ebi.ac.uk/pride) partner repository.Project Name: Gephyrin interactome from mouse brain lysates using anti-gephyrin antibody and anti-gephyrin DARPinsProject accession: PXD033641Project DOI: 10.6019/PXD033641

The following data sets were generated

Article and author information

Author details

  1. Benjamin FN Campbell

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  2. Antje Dittmann

    Functional Genomics Centre, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  3. Birgit Dreier

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  4. Andreas Plückthun

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    Andreas Plückthun, is a cofounder and shareholder of Molecular Partners, who are commercializing the DARPin technology..
  5. Shiva K Tyagarajan

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    For correspondence
    tyagarajan@pharma.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0074-1805

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_192522 /1)

  • Shiva K Tyagarajan

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_192689)

  • Andreas Plückthun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John R Huguenard, Stanford University School of Medicine, United States

Ethics

Animal experimentation: The collection of embryonic and adult tissue was performed in accordance with the European Community Council Directives of November 24th 1986 (86/609/EEC). Tissue collection was performed under license ZH011/19 approved by the Cantonal Veterinary office of Zurich.

Version history

  1. Received: June 8, 2022
  2. Preprint posted: July 3, 2022 (view preprint)
  3. Accepted: October 31, 2022
  4. Accepted Manuscript published: October 31, 2022 (version 1)
  5. Version of Record published: November 18, 2022 (version 2)
  6. Version of Record updated: November 21, 2022 (version 3)

Copyright

© 2022, Campbell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,194
    Page views
  • 209
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin FN Campbell
  2. Antje Dittmann
  3. Birgit Dreier
  4. Andreas Plückthun
  5. Shiva K Tyagarajan
(2022)
A DARPin-based molecular toolset to probe gephyrin and inhibitory synapse biology
eLife 11:e80895.
https://doi.org/10.7554/eLife.80895

Share this article

https://doi.org/10.7554/eLife.80895

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.