Flexible specificity of memory in Drosophila depends on a comparison between choices

  1. Mehrab N Modi
  2. Adithya E Rajagopalan
  3. Hervé Rouault
  4. Yoshinori Aso
  5. Glenn C Turner  Is a corresponding author
  1. Janelia Research Campus, United States
  2. Aix-Marseille University, France

Abstract

Memory guides behavior across widely varying environments and must therefore be both sufficiently specific and general. A memory too specific will be useless in even a slightly different environment, while an overly general memory may lead to suboptimal choices. Animals successfully learn to both distinguish between very similar stimuli and generalize across cues. Rather than forming memories that strike a balance between specificity and generality, Drosophila can flexibly categorize a given stimulus into different groups depending on the options available. We asked how this flexibility manifests itself in the well-characterized learning and memory pathways of the fruit fly. We show that flexible categorization in neuronal activity as well as behavior depends on the order and identity of the perceived stimuli. Our results identify the neural correlates of flexible stimulus-categorization in the fruit fly.

Data availability

All data have been uploaded to Dryad

The following data sets were generated

Article and author information

Author details

  1. Mehrab N Modi

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adithya E Rajagopalan

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hervé Rouault

    Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoshinori Aso

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2939-1688
  5. Glenn C Turner

    Janelia Research Campus, Ashburn, United States
    For correspondence
    turnerg@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5341-2784

Funding

Howard Hughes Medical Institute

  • Yoshinori Aso
  • Glenn C Turner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Preprint posted: May 26, 2022 (view preprint)
  2. Received: June 9, 2022
  3. Accepted: June 14, 2023
  4. Accepted Manuscript published: June 15, 2023 (version 1)
  5. Version of Record published: July 10, 2023 (version 2)

Copyright

© 2023, Modi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,285
    views
  • 138
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mehrab N Modi
  2. Adithya E Rajagopalan
  3. Hervé Rouault
  4. Yoshinori Aso
  5. Glenn C Turner
(2023)
Flexible specificity of memory in Drosophila depends on a comparison between choices
eLife 12:e80923.
https://doi.org/10.7554/eLife.80923

Share this article

https://doi.org/10.7554/eLife.80923

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.