Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining

  1. Wentao Yu
  2. Lei Kang
  3. Victor TC Tsang
  4. Yan Zhang
  5. Ivy HM Wong
  6. Terence TW Wong  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong

Abstract

Rapid multicolor three-dimensional (3D) imaging for centimeter-scale specimens with subcellular resolution remains a challenging but captivating scientific pursuit. Here, we present a fast, cost-effective, and robust multicolor whole-organ 3D imaging method assisted with ultraviolet (UV) surface excitation and vibratomy-assisted sectioning, termed translational rapid ultraviolet-excited sectioning tomography (TRUST). With an inexpensive UV light-emitting diode (UV-LED) and a color camera, TRUST achieves widefield exogenous molecular-specific fluorescence and endogenous content-rich autofluorescence imaging simultaneously while preserving low system complexity and system cost. Formalin-fixed specimens are stained layer by layer along with serial mechanical sectioning to achieve automated 3D imaging with high staining uniformity and time efficiency. 3D models of all vital organs in wild-type C57BL/6 mice with the 3D structure of their internal components (e.g., vessel network, glomeruli, and nerve tracts) can be reconstructed after imaging with TRUST to demonstrate its fast, robust, and high-content multicolor 3D imaging capability. Moreover, its potential for developmental biology has also been validated by imaging entire mouse embryos (~2 days for the embryo at the embryonic day of 15). TRUST offers a fast and cost-effective approach for high-resolution whole-organ multicolor 3D imaging while relieving researchers from the heavy sample preparation workload.

Data availability

Data availability. The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.

Article and author information

Author details

  1. Wentao Yu

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Wentao Yu, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4712-3177
  2. Lei Kang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Lei Kang, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
  3. Victor TC Tsang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Victor TC Tsang, has a financial interest in PhoMedics Limited, which, however, did not support this work..
  4. Yan Zhang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Yan Zhang, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
  5. Ivy HM Wong

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Ivy HM Wong, has a financial interest in V Path Limited, which, however, did not support this work..
  6. Terence TW Wong

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    ttwwong@ust.hk
    Competing interests
    Terence TW Wong, has a financial interest in PhoMedics Limited, which, however, did not support this work. Has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6399-758X

Funding

Research Grants Council, University Grants Committee (16208620)

  • Terence TW Wong

Research Grants Council, University Grants Committee (26203619)

  • Terence TW Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in conformity with a laboratory animal protocol approved by the Health, Safety and Environment Office of the Hong Kong University of Science and Technology (HKUST) (license number: AEP16212921).

Copyright

© 2022, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,262
    views
  • 203
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wentao Yu
  2. Lei Kang
  3. Victor TC Tsang
  4. Yan Zhang
  5. Ivy HM Wong
  6. Terence TW Wong
(2022)
Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining
eLife 11:e81015.
https://doi.org/10.7554/eLife.81015

Share this article

https://doi.org/10.7554/eLife.81015

Further reading

    1. Developmental Biology
    Nathaniel C Nelson, Matthias C Kugler
    Insight

    Cells called alveolar myofibroblasts, which have a central role in the development of the lung after birth, receive an orchestrated input from a range of different signaling pathways.

    1. Developmental Biology
    Max Henry Hills, Limei Ma ... C Ron Yu
    Tools and Resources

    We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and VRs, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.