Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining

  1. Wentao Yu
  2. Lei Kang
  3. Victor TC Tsang
  4. Yan Zhang
  5. Ivy HM Wong
  6. Terence TW Wong  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong

Abstract

Rapid multicolor three-dimensional (3D) imaging for centimeter-scale specimens with subcellular resolution remains a challenging but captivating scientific pursuit. Here, we present a fast, cost-effective, and robust multicolor whole-organ 3D imaging method assisted with ultraviolet (UV) surface excitation and vibratomy-assisted sectioning, termed translational rapid ultraviolet-excited sectioning tomography (TRUST). With an inexpensive UV light-emitting diode (UV-LED) and a color camera, TRUST achieves widefield exogenous molecular-specific fluorescence and endogenous content-rich autofluorescence imaging simultaneously while preserving low system complexity and system cost. Formalin-fixed specimens are stained layer by layer along with serial mechanical sectioning to achieve automated 3D imaging with high staining uniformity and time efficiency. 3D models of all vital organs in wild-type C57BL/6 mice with the 3D structure of their internal components (e.g., vessel network, glomeruli, and nerve tracts) can be reconstructed after imaging with TRUST to demonstrate its fast, robust, and high-content multicolor 3D imaging capability. Moreover, its potential for developmental biology has also been validated by imaging entire mouse embryos (~2 days for the embryo at the embryonic day of 15). TRUST offers a fast and cost-effective approach for high-resolution whole-organ multicolor 3D imaging while relieving researchers from the heavy sample preparation workload.

Data availability

Data availability. The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.

Article and author information

Author details

  1. Wentao Yu

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Wentao Yu, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4712-3177
  2. Lei Kang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Lei Kang, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
  3. Victor TC Tsang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Victor TC Tsang, has a financial interest in PhoMedics Limited, which, however, did not support this work..
  4. Yan Zhang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Yan Zhang, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
  5. Ivy HM Wong

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Ivy HM Wong, has a financial interest in V Path Limited, which, however, did not support this work..
  6. Terence TW Wong

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    ttwwong@ust.hk
    Competing interests
    Terence TW Wong, has a financial interest in PhoMedics Limited, which, however, did not support this work. Has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6399-758X

Funding

Research Grants Council, University Grants Committee (16208620)

  • Terence TW Wong

Research Grants Council, University Grants Committee (26203619)

  • Terence TW Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in conformity with a laboratory animal protocol approved by the Health, Safety and Environment Office of the Hong Kong University of Science and Technology (HKUST) (license number: AEP16212921).

Copyright

© 2022, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,263
    views
  • 204
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wentao Yu
  2. Lei Kang
  3. Victor TC Tsang
  4. Yan Zhang
  5. Ivy HM Wong
  6. Terence TW Wong
(2022)
Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining
eLife 11:e81015.
https://doi.org/10.7554/eLife.81015

Share this article

https://doi.org/10.7554/eLife.81015

Further reading

    1. Developmental Biology
    Nathaniel C Nelson, Matthias C Kugler
    Insight

    Cells called alveolar myofibroblasts, which have a central role in the development of the lung after birth, receive an orchestrated input from a range of different signaling pathways.

    1. Developmental Biology
    Imran S Khan, Christopher Molina ... Dean Sheppard
    Research Article

    Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.