Sex-specific role of myostatin signaling in neonatal muscle growth, denervation atrophy, and neuromuscular contractures

  1. Marianne E Emmert
  2. Parul Aggarwal
  3. Kritton Shay-Winkler
  4. Se-Jin Lee
  5. Qingnian Goh  Is a corresponding author
  6. Roger Cornwall  Is a corresponding author
  1. University of Cincinnati, United States
  2. Cincinnati Children's Hospital Medical Center, United States
  3. Jackson Laboratory, United States

Abstract

Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Marianne E Emmert

    Department of Medical Sciences, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  2. Parul Aggarwal

    Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  3. Kritton Shay-Winkler

    Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  4. Se-Jin Lee

    Jackson Laboratory, Farmington, United States
    Competing interests
    Se-Jin Lee, consulting fees from Biohaven Pharmaceuticals, Inc., and Alnylam Pharmaceuticals, Inc. Payment/honoraria: Regeneron Pharmaceuticals, Inc. Patent: Therapeutics targeting transforming growth factor beta family signaling".".
  5. Qingnian Goh

    Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    Qingnian.Goh@cchmc.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4108-2957
  6. Roger Cornwall

    Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    Roger.Cornwall@cchmc.org
    Competing interests
    No competing interests declared.

Funding

National Institutes of Health (R01HD098280-01)

  • Roger Cornwall

Cincinnati Children's Hospital Medical Center (Junior Cooperative Society)

  • Roger Cornwall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher Cardozo, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: This study was performed in strict accordance with recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All rodents were handled according to approved institutional animal care and use committee (IACUC) protocols (#2020-0067) of the Cincinnati Children's Hospital Medical Center, and every effort was made to minimize suffering.

Version history

  1. Received: June 16, 2022
  2. Preprint posted: June 18, 2022 (view preprint)
  3. Accepted: October 31, 2022
  4. Accepted Manuscript published: October 31, 2022 (version 1)
  5. Version of Record published: January 24, 2023 (version 2)

Copyright

© 2022, Emmert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 968
    views
  • 162
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marianne E Emmert
  2. Parul Aggarwal
  3. Kritton Shay-Winkler
  4. Se-Jin Lee
  5. Qingnian Goh
  6. Roger Cornwall
(2022)
Sex-specific role of myostatin signaling in neonatal muscle growth, denervation atrophy, and neuromuscular contractures
eLife 11:e81121.
https://doi.org/10.7554/eLife.81121

Share this article

https://doi.org/10.7554/eLife.81121

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.