Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis

  1. Andrew I Wong
  2. Tiago Beites
  3. Kyle A Planck
  4. Rachael A Fieweger
  5. Kathryn A Eckartt
  6. Shuqi Li
  7. Nicholas C Poulton
  8. Brian C VanderVen
  9. Kyu Y Rhee
  10. Dirk Schnappinger
  11. Sabine Ehrt
  12. Jeremy M Rock  Is a corresponding author
  1. Rockefeller University, United States
  2. Weill Cornell Medicine, United States
  3. Cornell University, United States

Abstract

Cyclic AMP (cAMP) is a ubiquitous second messenger that transduces signals from cellular receptors to downstream effectors. Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, devotes a considerable amount of coding capacity to produce, sense, and degrade cAMP. Despite this fact, our understanding of how cAMP regulates Mtb physiology remains limited. Here, we took a genetic approach to investigate the function of the sole essential adenylate cyclase in Mtb H37Rv, Rv3645. We found that lack of rv3645 resulted in increased sensitivity to numerous antibiotics by a mechanism independent of substantial increases in envelope permeability. We made the unexpected observation that rv3645 is conditionally essential for Mtb growth only in the presence of long-chain fatty acids, a host-relevant carbon source. A suppressor screen further identified mutations in the atypical cAMP phosphodiesterase rv1339 that suppress both fatty acid and drug sensitivity phenotypes in strains lacking rv3645. Using mass spectrometry, we found that Rv3645 is the dominant source of cAMP under standard laboratory growth conditions, that cAMP production is the essential function of Rv3645 in the presence of long-chain fatty acids, and that reduced cAMP levels result in increased long-chain fatty acid uptake and metabolism and increased antibiotic susceptibility. Our work defines rv3645 and cAMP as central mediators of intrinsic multidrug resistance and fatty acid metabolism in Mtb and highlights the potential utility of small molecule modulators of cAMP signaling.

Data availability

RNA-seq data of Mtb H37Rv are deposited in NCBI's Sequence Read Archive (SRA) under BioProject PRJNA930437. Whole genome sequencing data for ΔmacE and derived spontaneous rescue mutants were deposited in NCBI's SRA under BioProject PRJNA811534. CRISPRi suppressor screen sequencing data was deposited in NCBI's SRA under BioProject PRJNA814682.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Andrew I Wong

    Laboratory of Host-Pathogen Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiago Beites

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyle A Planck

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachael A Fieweger

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kathryn A Eckartt

    Laboratory of Host-Pathogen Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuqi Li

    Laboratory of Host-Pathogen Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8133-6838
  7. Nicholas C Poulton

    Laboratory of Host-Pathogen Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian C VanderVen

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3655-4390
  9. Kyu Y Rhee

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dirk Schnappinger

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sabine Ehrt

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7951-2310
  12. Jeremy M Rock

    Laboratory of Host-Pathogen Biology, Rockefeller University, New York, United States
    For correspondence
    rock@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9310-951X

Funding

Bill and Melinda Gates Foundation (INV-004709)

  • Kyu Y Rhee

National Institutes of Health (P01AI143575)

  • Dirk Schnappinger
  • Sabine Ehrt

National Institutes of Health (R01130018)

  • Brian C VanderVen

NIH Tuberculosis Research Units Network (U19AI162584)

  • Kyu Y Rhee
  • Jeremy M Rock

Department of Defense (PR192421)

  • Jeremy M Rock

Robertson Therapeutic Development Fund

  • Jeremy M Rock

NIH/NIAID New Innovator Award (1DP2AI144850-01)

  • Jeremy M Rock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,032
    views
  • 447
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew I Wong
  2. Tiago Beites
  3. Kyle A Planck
  4. Rachael A Fieweger
  5. Kathryn A Eckartt
  6. Shuqi Li
  7. Nicholas C Poulton
  8. Brian C VanderVen
  9. Kyu Y Rhee
  10. Dirk Schnappinger
  11. Sabine Ehrt
  12. Jeremy M Rock
(2023)
Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis
eLife 12:e81177.
https://doi.org/10.7554/eLife.81177

Share this article

https://doi.org/10.7554/eLife.81177

Further reading

    1. Microbiology and Infectious Disease
    Lesia Semenova, Yingfan Wang ... Edward P Browne
    Research Article

    Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning (ML) approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host–reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A leave-one-covariate-out inference approach identified specific HIV reservoir and clinical–demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical–demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, ML algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA . The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.

    1. Microbiology and Infectious Disease
    Srinivasan Vijay, Nguyen Le Hoai Bao ... Nguyen Thuy Thuong
    Research Article

    Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15–60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.