Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide in the mouse gut depends on the resident microbiota

  1. Daniel Hoces
  2. Giorgia Greter
  3. Markus Arnoldini
  4. Melanie L Stäubli
  5. Claudia Moresi
  6. Anna Sintsova
  7. Sara Berent
  8. Isabel Kolinko
  9. Florence Bansept
  10. Aurore Woller
  11. Janine Häfliger
  12. Eric Martens
  13. Wolf-Dietrich Hardt
  14. Shinichi Sunagawa
  15. Claude Loverdo
  16. Emma Slack  Is a corresponding author
  1. ETH Zurich, Switzerland
  2. Max Planck Institute for Evolutionary Biology, Germany
  3. Weizmann Institute of Science, Israel
  4. University Hospital of Zurich, Switzerland
  5. University of Michigan-Ann Arbor, United States
  6. UPMC, CNRS, France

Abstract

Many microbiota-based therapeutics rely on our ability to introduce a microbe of choice into an already-colonized intestine. In this study, we used genetically barcoded Bacteroides thetaiotaomicron (B. theta) strains to quantify population bottlenecks experienced by a B. theta population during colonization of the mouse gut. As expected, this reveals an inverse relationship between microbiota complexity and the probability that an individual wildtype B. theta clone will colonize the gut. The polysaccharide capsule of B. theta is important for resistance against attacks from other bacteria, phage, and the host immune system, and correspondingly acapsular B. theta loses in competitive colonization against the wildtype strain. Surprisingly, the acapsular strain did not show a colonization defect in mice with a low-complexity microbiota, as we found that acapsular strains have an indistinguishable colonization probability to the wildtype strain on single-strain colonization. This discrepancy could be resolved by tracking in vivo growth dynamics of both strains: acapsular B .theta shows a longer lag-phase in the gut lumen as well as a slightly slower net growth rate. Therefore, as long as there is no niche competitor for the acapsular strain, this has only a small influence on colonization probability. However, the presence of a strong niche competitor (i.e., wildtype B. theta, SPF microbiota) rapidly excludes the acapsular strain during competitive colonization. Correspondingly, the acapsular strain shows a similarly low colonization probability in the context of a co-colonization with the wildtype strain or a complete microbiota. In summary, neutral tagging and detailed analysis of bacterial growth kinetics can therefore quantify the mechanisms of colonization resistance in differently-colonized animals.

Data availability

Relevant numerical source data for Figures and Supplementary is available in Source Data 1. Raw sequencing data accessed on ENA (https://www.ebi.ac.uk/ena/browser/home) under Project ID PRJEB57876 and PRJEB53981. Raw data and code used for generating all figures in this publication are made available in a curated data archive at ETH Zurich (https://www.research-collection.ethz.ch/) under the DOI 10.3929/ethz-b-000557179.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Daniel Hoces

    Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Giorgia Greter

    Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Markus Arnoldini

    Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Melanie L Stäubli

    Department of Biology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Claudia Moresi

    Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Sintsova

    Department of Biology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Sara Berent

    Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabel Kolinko

    Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Florence Bansept

    Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0562-9222
  10. Aurore Woller

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Janine Häfliger

    Klinik für Gastroenterologie und Hepatologie, University Hospital of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Eric Martens

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Wolf-Dietrich Hardt

    Department of Biology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9892-6420
  14. Shinichi Sunagawa

    Department of Biology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3065-0314
  15. Claude Loverdo

    UPMC, CNRS, Paris Cedex 05, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0888-1717
  16. Emma Slack

    Department of Health Sciences and Techn, ETH Zurich, Zurich, Switzerland
    For correspondence
    emma.slack@hest.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2473-1145

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NCCR Microbiome)

  • Wolf-Dietrich Hardt
  • Shinichi Sunagawa
  • Emma Slack

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (40B2-0_180953)

  • Emma Slack

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_185128)

  • Emma Slack

Gebert Rüf Stiftung (GR073_17)

  • Claude Loverdo
  • Emma Slack

Botnar Research Centre for Child Health, University of Basel (BRCCH_MIP)

  • Shinichi Sunagawa
  • Emma Slack

Agence Nationale de la Recherche (ANR-21-CE45-0015)

  • Claude Loverdo

Agence Nationale de la Recherche (ANR-20-CE30-0001)

  • Claude Loverdo

Centre National de la Recherche Scientifique (MITI CNRS AAP adaptation du vivant à son environnement)

  • Claude Loverdo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed with approval from the Zürich Cantonal Authority under license number ZH120/19.

Copyright

© 2023, Hoces et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,217
    views
  • 339
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Hoces
  2. Giorgia Greter
  3. Markus Arnoldini
  4. Melanie L Stäubli
  5. Claudia Moresi
  6. Anna Sintsova
  7. Sara Berent
  8. Isabel Kolinko
  9. Florence Bansept
  10. Aurore Woller
  11. Janine Häfliger
  12. Eric Martens
  13. Wolf-Dietrich Hardt
  14. Shinichi Sunagawa
  15. Claude Loverdo
  16. Emma Slack
(2023)
Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide in the mouse gut depends on the resident microbiota
eLife 12:e81212.
https://doi.org/10.7554/eLife.81212

Share this article

https://doi.org/10.7554/eLife.81212

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.