Male rodent perirhinal cortex, but not ventral hippocampus, inhibition induces approach bias under object-based approach-avoidance conflict

  1. Sandeep S Dhawan
  2. Carl Pinter
  3. Andy CH Lee  Is a corresponding author
  4. Rutsuko Ito  Is a corresponding author
  1. University of Toronto, Canada

Abstract

Neural models of approach-avoidance (AA) conflict behavior and its dysfunction have focused traditionally on the hippocampus, with the assumption that this medial temporal lobe (MTL) structure plays a ubiquitous role in arbitrating AA conflict. We challenge this perspective by using three different AA behavioural tasks in conjunction with optogenetics, to demonstrate that a neighbouring region in male rats, perirhinal cortex, is also critically involved but only when conflicting motivational values are associated with objects and not contextual information. The ventral hippocampus, in contrast, was found not to be essential for object-associated AA conflict, suggesting its preferential involvement in context-associated conflict. We propose that stimulus type can impact MTL involvement during AA conflict and that a more nuanced understanding of MTL contributions to impaired AA behaviour (e.g., anxiety) is required. These findings serve to expand upon the established functions of the perirhinal cortex while concurrently presenting innovative behavioural paradigms that permit the assessment of different facets of AA conflict behaviour.

Data availability

All data generated in this study have been deposited in Open Science Framework database under the accession code: https://osf.io/9h7wr/

The following data sets were generated

Article and author information

Author details

  1. Sandeep S Dhawan

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6511-7678
  2. Carl Pinter

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Andy CH Lee

    Department of Psychology, University of Toronto, Toronto, Canada
    For correspondence
    andych.lee@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8546-5311
  4. Rutsuko Ito

    Department of Psychology, University of Toronto, Toronto, Canada
    For correspondence
    rutsuko.ito@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1769-5470

Funding

Canadian Institutes of Health Research (156070)

  • Andy CH Lee
  • Rutsuko Ito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mario A Penzo, National Institute of Mental Health, United States

Ethics

Animal experimentation: All experiments were conducted in accordance with the regulations of the Canadian Council of Animal Care and approved by the University and Local Animal Care Committee of the University of Toronto (Protocol no. 20012479).

Version history

  1. Received: June 29, 2022
  2. Preprint posted: July 2, 2022 (view preprint)
  3. Accepted: June 6, 2023
  4. Accepted Manuscript published: June 14, 2023 (version 1)
  5. Version of Record published: June 26, 2023 (version 2)

Copyright

© 2023, Dhawan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 607
    views
  • 50
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandeep S Dhawan
  2. Carl Pinter
  3. Andy CH Lee
  4. Rutsuko Ito
(2023)
Male rodent perirhinal cortex, but not ventral hippocampus, inhibition induces approach bias under object-based approach-avoidance conflict
eLife 12:e81467.
https://doi.org/10.7554/eLife.81467

Share this article

https://doi.org/10.7554/eLife.81467

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.