Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity

  1. Priscila S Rothier  Is a corresponding author
  2. Anne-Claire Fabre
  3. Julien Clavel
  4. Roger BJ Benson
  5. Anthony Herrel
  1. Muséum National d'Histoire Naturelle, France
  2. Naturhistorisches Museum Bern, Switzerland
  3. Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, France
  4. University of Oxford, United Kingdom

Abstract

Vertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals. Distal elements not only exhibit greater shape diversity, but also show stronger within-element integration and, on average, faster evolutionary responses than intermediate and upper limb segments. Results are consistent with the hypothesis that late developing distal bones display greater morphological variation than more proximal limb elements. However, the higher integration observed within the autopod deviates from such developmental predictions, suggesting that functional specialization plays an important role in driving within-element covariation. Proximal and distal limb segments also show different macroevolutionary patterns, albeit not showing a perfect proximo-distal gradient. The high disparity of the mammalian autopod, reported here, is consistent with the higher potential of development to generate variation in more distal limb structures, as well as functional specialization of the distal elements.

Data availability

Morphometric data and R codes are available on Dryad (DOI: 10.5061/dryad.0cfxpnw6h)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Priscila S Rothier

    Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
    For correspondence
    priscilasrd@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3017-6528
  2. Anne-Claire Fabre

    Naturhistorisches Museum Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Clavel

    Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Roger BJ Benson

    Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony Herrel

    Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (204841/2018-6)

  • Priscila S Rothier

European Research Council (2015-STG-677774)

  • Roger BJ Benson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Received: June 29, 2022
  2. Preprint posted: July 28, 2022 (view preprint)
  3. Accepted: January 24, 2023
  4. Accepted Manuscript published: January 26, 2023 (version 1)
  5. Version of Record published: February 8, 2023 (version 2)

Copyright

© 2023, Rothier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,238
    views
  • 398
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Priscila S Rothier
  2. Anne-Claire Fabre
  3. Julien Clavel
  4. Roger BJ Benson
  5. Anthony Herrel
(2023)
Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity
eLife 12:e81492.
https://doi.org/10.7554/eLife.81492

Share this article

https://doi.org/10.7554/eLife.81492

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.