Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells

Abstract

The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~ 3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Together, these results provide direct support for the 'space-time wiring' model for direction selectivity.

Data availability

Source data provided

Article and author information

Author details

  1. Prerna Srivastava

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Geoff deRosenroll

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5431-2814
  3. Akihiro Matsumoto

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Tracy Michaels

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Zachary Turple

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Varsha Jain

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Santhosh Sethuramanujam

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin L Murphy-Baum

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6746-3091
  9. Keisuke Yonehara

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Gautam Bhagwan Awatramani

    Department of Biology, University of Victoria, Victoria, Canada
    For correspondence
    gautam@uvic.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0610-5271

Funding

Canadian Institutes of Health Research (159444)

  • Gautam Bhagwan Awatramani

European Research Council (638730)

  • Keisuke Yonehara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the Canadian Council on Animal Care and approved by the University of Victoria's Animal Care Committee, or in accordance with Danish standard ethical guidelines and were approved by the Danish National Animal Experiment Committee (Permission No. 2015-15-0201-00541; 2020-15-0201-00452).

Copyright

© 2022, Srivastava et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,103
    views
  • 178
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prerna Srivastava
  2. Geoff deRosenroll
  3. Akihiro Matsumoto
  4. Tracy Michaels
  5. Zachary Turple
  6. Varsha Jain
  7. Santhosh Sethuramanujam
  8. Benjamin L Murphy-Baum
  9. Keisuke Yonehara
  10. Gautam Bhagwan Awatramani
(2022)
Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells
eLife 11:e81533.
https://doi.org/10.7554/eLife.81533

Share this article

https://doi.org/10.7554/eLife.81533

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.