Generation of a transparent killifish line through multiplex CRISPR/Cas9-mediated gene inactivation

  1. Johannes Krug
  2. Birgit Perner
  3. Carolin Albertz
  4. Hanna Mörl
  5. Vera L Hopfenmüller
  6. Christoph Englert  Is a corresponding author
  1. Leibniz Institute on Aging - Fritz Lipmann Institute, Germany

Abstract

Body pigmentation is a limitation for in vivo imaging and thus for the performance of longitudinal studies in biomedicine. A possibility to circumvent this obstacle is the employment of pigmentation mutants, which are used in fish species like zebrafish and medaka. To address the basis of aging, the short-lived African killifish Nothobranchius furzeri has recently been established as a model organism. Despite its short lifespan, N. furzeri shows typical signs of mammalian aging including telomere shortening, accumulation of senescent cells and loss of regenerative capacity. Here, we report the generation of a transparent N. furzeri line by simultaneous inactivation of three key loci responsible for pigmentation. We demonstrate that this stable line, named klara, can serve as a tool for different applications including behavioral experiments and the establishment of a senescence reporter by integration of a fluorophore into the cdkn1a (p21) locus and in vivo microscopy of the resulting line.

Data availability

All data generated or analysed during this study are or will be included in the manuscript and supporting files; Source Data files have been provided for all displayed items.

Article and author information

Author details

  1. Johannes Krug

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Birgit Perner

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Carolin Albertz

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanna Mörl

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Vera L Hopfenmüller

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9807-6403
  6. Christoph Englert

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    For correspondence
    christoph.englert@leibniz-fli.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5931-3189

Funding

Carl Zeiss Stiftung (IMPULS,P2019-01-006)

  • Christoph Englert

Leibniz Institute on Aging (Graduate Student Fellowship)

  • Johannes Krug

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Itamar Harel, The Hebrew University of Jerusalem, Israel

Ethics

Animal experimentation: All fish were maintained in the Nothobranchius facility of the Leibniz Institute on Aging - Fritz Lipmann Institute Jena according to the German Animal Welfare Law. The performed experiments reported here were covered by the animal license FLI-17-016, FLI-20-001 and FLI-20-102, which were approved by the local authorities (Thüringer Landesamt für Verbraucherschutz).

Version history

  1. Received: July 1, 2022
  2. Preprint posted: July 4, 2022 (view preprint)
  3. Accepted: February 23, 2023
  4. Accepted Manuscript published: February 23, 2023 (version 1)
  5. Accepted Manuscript updated: February 27, 2023 (version 2)
  6. Version of Record published: March 13, 2023 (version 3)

Copyright

© 2023, Krug et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,854
    views
  • 350
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes Krug
  2. Birgit Perner
  3. Carolin Albertz
  4. Hanna Mörl
  5. Vera L Hopfenmüller
  6. Christoph Englert
(2023)
Generation of a transparent killifish line through multiplex CRISPR/Cas9-mediated gene inactivation
eLife 12:e81549.
https://doi.org/10.7554/eLife.81549

Share this article

https://doi.org/10.7554/eLife.81549

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.