Generation of a transparent killifish line through multiplex CRISPR/Cas9-mediated gene inactivation

  1. Johannes Krug
  2. Birgit Perner
  3. Carolin Albertz
  4. Hanna Mörl
  5. Vera L Hopfenmüller
  6. Christoph Englert  Is a corresponding author
  1. Leibniz Institute on Aging - Fritz Lipmann Institute, Germany

Abstract

Body pigmentation is a limitation for in vivo imaging and thus for the performance of longitudinal studies in biomedicine. A possibility to circumvent this obstacle is the employment of pigmentation mutants, which are used in fish species like zebrafish and medaka. To address the basis of aging, the short-lived African killifish Nothobranchius furzeri has recently been established as a model organism. Despite its short lifespan, N. furzeri shows typical signs of mammalian aging including telomere shortening, accumulation of senescent cells and loss of regenerative capacity. Here, we report the generation of a transparent N. furzeri line by simultaneous inactivation of three key loci responsible for pigmentation. We demonstrate that this stable line, named klara, can serve as a tool for different applications including behavioral experiments and the establishment of a senescence reporter by integration of a fluorophore into the cdkn1a (p21) locus and in vivo microscopy of the resulting line.

Data availability

All data generated or analysed during this study are or will be included in the manuscript and supporting files; Source Data files have been provided for all displayed items.

Article and author information

Author details

  1. Johannes Krug

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Birgit Perner

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Carolin Albertz

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanna Mörl

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Vera L Hopfenmüller

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9807-6403
  6. Christoph Englert

    Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    For correspondence
    christoph.englert@leibniz-fli.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5931-3189

Funding

Carl Zeiss Stiftung (IMPULS,P2019-01-006)

  • Christoph Englert

Leibniz Institute on Aging (Graduate Student Fellowship)

  • Johannes Krug

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All fish were maintained in the Nothobranchius facility of the Leibniz Institute on Aging - Fritz Lipmann Institute Jena according to the German Animal Welfare Law. The performed experiments reported here were covered by the animal license FLI-17-016, FLI-20-001 and FLI-20-102, which were approved by the local authorities (Thüringer Landesamt für Verbraucherschutz).

Copyright

© 2023, Krug et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,194
    views
  • 378
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes Krug
  2. Birgit Perner
  3. Carolin Albertz
  4. Hanna Mörl
  5. Vera L Hopfenmüller
  6. Christoph Englert
(2023)
Generation of a transparent killifish line through multiplex CRISPR/Cas9-mediated gene inactivation
eLife 12:e81549.
https://doi.org/10.7554/eLife.81549

Share this article

https://doi.org/10.7554/eLife.81549

Further reading

    1. Developmental Biology
    Ming-Ming Chen, Yue Zhao ... Zheng-Xing Lian
    Research Article

    Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article Updated

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.