Neural underpinning of a respiration-associated resting-state fMRI network

  1. Wenyu Tu
  2. Nanyin Zhang  Is a corresponding author
  1. Pennsylvania State University, United States

Abstract

Respiration can induce motion and CO2 fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration that can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiologic signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an iso-electrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity and resting-state brain networks in both healthy and diseased conditions.

Data availability

All data for this study have been deposited to NITRIC repository.

The following data sets were generated
    1. Tu W
    2. Zhang
    3. N
    (2022) Electrophysiology, resting state fMRI and respiration in rats
    NeuroImaging Tools and Resources Collaboratory (NITRC), https://www.nitrc.org/docman/?group_id=1582.

Article and author information

Author details

  1. Wenyu Tu

    The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nanyin Zhang

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    For correspondence
    nuz2@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5824-9058

Funding

National Institute of Neurological Disorders and Stroke (R01NS085200)

  • Nanyin Zhang

National Institute of Mental Health (RF1MH114224)

  • Nanyin Zhang

National Institute of General Medical Sciences (R01GM141792)

  • Nanyin Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla L Miller, University of Oxford, United Kingdom

Ethics

Animal experimentation: The present study was approved by the Pennsylvania State University Institutional Animal Care and Use Committee (IACUC) with the protocol number of PRAMS201343583.

Version history

  1. Received: July 1, 2022
  2. Preprint posted: July 13, 2022 (view preprint)
  3. Accepted: October 13, 2022
  4. Accepted Manuscript published: October 20, 2022 (version 1)
  5. Version of Record published: November 9, 2022 (version 2)

Copyright

© 2022, Tu & Zhang

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,800
    views
  • 417
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenyu Tu
  2. Nanyin Zhang
(2022)
Neural underpinning of a respiration-associated resting-state fMRI network
eLife 11:e81555.
https://doi.org/10.7554/eLife.81555

Share this article

https://doi.org/10.7554/eLife.81555

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.