Neural underpinning of a respiration-associated resting-state fMRI network

  1. Wenyu Tu
  2. Nanyin Zhang  Is a corresponding author
  1. Pennsylvania State University, United States

Abstract

Respiration can induce motion and CO2 fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration that can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiologic signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an iso-electrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity and resting-state brain networks in both healthy and diseased conditions.

Data availability

All data for this study have been deposited to NITRIC repository.

The following data sets were generated
    1. Tu W
    2. Zhang
    3. N
    (2022) Electrophysiology, resting state fMRI and respiration in rats
    NeuroImaging Tools and Resources Collaboratory (NITRC), https://www.nitrc.org/docman/?group_id=1582.

Article and author information

Author details

  1. Wenyu Tu

    The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nanyin Zhang

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    For correspondence
    nuz2@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5824-9058

Funding

National Institute of Neurological Disorders and Stroke (R01NS085200)

  • Nanyin Zhang

National Institute of Mental Health (RF1MH114224)

  • Nanyin Zhang

National Institute of General Medical Sciences (R01GM141792)

  • Nanyin Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The present study was approved by the Pennsylvania State University Institutional Animal Care and Use Committee (IACUC) with the protocol number of PRAMS201343583.

Copyright

© 2022, Tu & Zhang

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,421
    views
  • 484
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenyu Tu
  2. Nanyin Zhang
(2022)
Neural underpinning of a respiration-associated resting-state fMRI network
eLife 11:e81555.
https://doi.org/10.7554/eLife.81555

Share this article

https://doi.org/10.7554/eLife.81555

Further reading

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.

    1. Neuroscience
    Markus R Tünte, Stefanie Hoehl ... Ezgi Kayhan
    Research Advance

    Several recent theoretical accounts have posited that interoception, the perception of internal bodily signals, plays a vital role in early human development. Yet, empirical evidence of cardiac interoceptive sensitivity in infants to date has been mixed. Furthermore, existing evidence does not go beyond the perception of cardiac signals and focuses only on the age of 5–7 mo, limiting the generalizability of the results. Here, we used a modified version of the cardiac interoceptive sensitivity paradigm introduced by Maister et al., 2017 in 3-, 9-, and 18-mo-old infants using cross-sectional and longitudinal approaches. Going beyond, we introduce a novel experimental paradigm, namely the iBREATH, to investigate respiratory interoceptive sensitivity in infants. Overall, for cardiac interoceptive sensitivity (total n=135) we find rather stable evidence across ages with infants on average preferring stimuli presented synchronously to their heartbeat. For respiratory interoceptive sensitivity (total n=120) our results show a similar pattern in the first year of life, but not at 18 mo. We did not observe a strong relationship between cardiac and respiratory interoceptive sensitivity at 3 and 9 mo but found some evidence for a relationship at 18 mo. We validated our results using specification curve- and mega-analytic approaches. By examining early cardiac and respiratory interoceptive processing, we provide evidence that infants are sensitive to their interoceptive signals.