Abstract

While dysregulation of adipocyte endocrine function plays a central role in obesity and its complications, the vast majority of adipokines remain uncharacterized. We employed bio-orthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry to comprehensively characterize the secretome of murine visceral and subcutaneous white and interscapular brown adipocytes. Over 600 proteins were identified, the majority of which showed cell type-specific enrichment. We here describe a metabolic role for leucine-rich α-2 glycoprotein 1 (LRG1) as an obesity-regulated adipokine secreted by mature adipocytes. LRG1 overexpression significantly improved glucose homeostasis in diet-induced and genetically obese mice. This was associated with markedly reduced white adipose tissue macrophage accumulation and systemic inflammation. Mechanistically, we found LRG1 binds cytochrome c in circulation to dampen its pro-inflammatory effect. These data support a new role for LRG1 as an insulin sensitizer with therapeutic potential given its immunomodulatory function at the nexus of obesity, inflammation, and associated pathology.

Data availability

Proteomic dataset has been deposited to Proteomexchange PRIDE under accession PXD035318. RNA-Seq data have been deposited to GEO under accession GSE208219. All original gels and blots are available as Source Data Files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chan Hee J Choi

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. William Barr

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samir Zaman

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Corey Model

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Annsea Park

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mascha Koenen

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1024-4506
  7. Zeran Lin

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4418-2443
  8. Sarah K Szwed

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. François Marchildon

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Audrey Crane

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Henrik Molina

    Proteomics Resource Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8950-4990
  13. Paul Cohen

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    For correspondence
    pcohen@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2786-8585

Funding

American Diabetes Association (1-17-ACE-17)

  • Paul Cohen

National Institutes of Health (RC2 DK129961)

  • Paul Cohen

National Institute of General Medical Sciences (T32GM007739)

  • Chan Hee J Choi
  • Sarah K Szwed

Sarnoff Cardiovascular Research Foundation

  • Samir Zaman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Ethics

Animal experimentation: All animal studies were performed in accordance with the institutional guidelines of the Rockefeller University Institutional Animal Care and Use Committee (IACUC) protocol (18016-H). Experiments involving adenoviral and AAV8 vectors were performed under general anesthesia using isoflurane, in accordance with the institutional ABSL-2 guidelines.

Version history

  1. Preprint posted: July 12, 2021 (view preprint)
  2. Received: July 2, 2022
  3. Accepted: November 6, 2022
  4. Accepted Manuscript published: November 8, 2022 (version 1)
  5. Version of Record published: November 18, 2022 (version 2)

Copyright

© 2022, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,192
    views
  • 467
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chan Hee J Choi
  2. William Barr
  3. Samir Zaman
  4. Corey Model
  5. Annsea Park
  6. Mascha Koenen
  7. Zeran Lin
  8. Sarah K Szwed
  9. François Marchildon
  10. Audrey Crane
  11. Thomas S Carroll
  12. Henrik Molina
  13. Paul Cohen
(2022)
LRG1 is an adipokine that promotes insulin sensitivity and suppresses inflammation
eLife 11:e81559.
https://doi.org/10.7554/eLife.81559

Share this article

https://doi.org/10.7554/eLife.81559

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.