Abstract

While dysregulation of adipocyte endocrine function plays a central role in obesity and its complications, the vast majority of adipokines remain uncharacterized. We employed bio-orthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry to comprehensively characterize the secretome of murine visceral and subcutaneous white and interscapular brown adipocytes. Over 600 proteins were identified, the majority of which showed cell type-specific enrichment. We here describe a metabolic role for leucine-rich α-2 glycoprotein 1 (LRG1) as an obesity-regulated adipokine secreted by mature adipocytes. LRG1 overexpression significantly improved glucose homeostasis in diet-induced and genetically obese mice. This was associated with markedly reduced white adipose tissue macrophage accumulation and systemic inflammation. Mechanistically, we found LRG1 binds cytochrome c in circulation to dampen its pro-inflammatory effect. These data support a new role for LRG1 as an insulin sensitizer with therapeutic potential given its immunomodulatory function at the nexus of obesity, inflammation, and associated pathology.

Data availability

Proteomic dataset has been deposited to Proteomexchange PRIDE under accession PXD035318. RNA-Seq data have been deposited to GEO under accession GSE208219. All original gels and blots are available as Source Data Files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chan Hee J Choi

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. William Barr

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samir Zaman

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Corey Model

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Annsea Park

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mascha Koenen

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1024-4506
  7. Zeran Lin

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4418-2443
  8. Sarah K Szwed

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. François Marchildon

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Audrey Crane

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Henrik Molina

    Proteomics Resource Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8950-4990
  13. Paul Cohen

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    For correspondence
    pcohen@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2786-8585

Funding

American Diabetes Association (1-17-ACE-17)

  • Paul Cohen

National Institutes of Health (RC2 DK129961)

  • Paul Cohen

National Institute of General Medical Sciences (T32GM007739)

  • Chan Hee J Choi
  • Sarah K Szwed

Sarnoff Cardiovascular Research Foundation

  • Samir Zaman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Ethics

Animal experimentation: All animal studies were performed in accordance with the institutional guidelines of the Rockefeller University Institutional Animal Care and Use Committee (IACUC) protocol (18016-H). Experiments involving adenoviral and AAV8 vectors were performed under general anesthesia using isoflurane, in accordance with the institutional ABSL-2 guidelines.

Version history

  1. Preprint posted: July 12, 2021 (view preprint)
  2. Received: July 2, 2022
  3. Accepted: November 6, 2022
  4. Accepted Manuscript published: November 8, 2022 (version 1)
  5. Version of Record published: November 18, 2022 (version 2)

Copyright

© 2022, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,051
    views
  • 437
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chan Hee J Choi
  2. William Barr
  3. Samir Zaman
  4. Corey Model
  5. Annsea Park
  6. Mascha Koenen
  7. Zeran Lin
  8. Sarah K Szwed
  9. François Marchildon
  10. Audrey Crane
  11. Thomas S Carroll
  12. Henrik Molina
  13. Paul Cohen
(2022)
LRG1 is an adipokine that promotes insulin sensitivity and suppresses inflammation
eLife 11:e81559.
https://doi.org/10.7554/eLife.81559

Share this article

https://doi.org/10.7554/eLife.81559

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.