Abstract

While dysregulation of adipocyte endocrine function plays a central role in obesity and its complications, the vast majority of adipokines remain uncharacterized. We employed bio-orthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry to comprehensively characterize the secretome of murine visceral and subcutaneous white and interscapular brown adipocytes. Over 600 proteins were identified, the majority of which showed cell type-specific enrichment. We here describe a metabolic role for leucine-rich α-2 glycoprotein 1 (LRG1) as an obesity-regulated adipokine secreted by mature adipocytes. LRG1 overexpression significantly improved glucose homeostasis in diet-induced and genetically obese mice. This was associated with markedly reduced white adipose tissue macrophage accumulation and systemic inflammation. Mechanistically, we found LRG1 binds cytochrome c in circulation to dampen its pro-inflammatory effect. These data support a new role for LRG1 as an insulin sensitizer with therapeutic potential given its immunomodulatory function at the nexus of obesity, inflammation, and associated pathology.

Data availability

Proteomic dataset has been deposited to Proteomexchange PRIDE under accession PXD035318. RNA-Seq data have been deposited to GEO under accession GSE208219. All original gels and blots are available as Source Data Files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chan Hee J Choi

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. William Barr

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samir Zaman

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Corey Model

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Annsea Park

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mascha Koenen

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1024-4506
  7. Zeran Lin

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4418-2443
  8. Sarah K Szwed

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. François Marchildon

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Audrey Crane

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Henrik Molina

    Proteomics Resource Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8950-4990
  13. Paul Cohen

    Laboratory of Molecular Metabolism, Rockefeller University, New York, United States
    For correspondence
    pcohen@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2786-8585

Funding

American Diabetes Association (1-17-ACE-17)

  • Paul Cohen

National Institutes of Health (RC2 DK129961)

  • Paul Cohen

National Institute of General Medical Sciences (T32GM007739)

  • Chan Hee J Choi
  • Sarah K Szwed

Sarnoff Cardiovascular Research Foundation

  • Samir Zaman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were performed in accordance with the institutional guidelines of the Rockefeller University Institutional Animal Care and Use Committee (IACUC) protocol (18016-H). Experiments involving adenoviral and AAV8 vectors were performed under general anesthesia using isoflurane, in accordance with the institutional ABSL-2 guidelines.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Version history

  1. Preprint posted: July 12, 2021 (view preprint)
  2. Received: July 2, 2022
  3. Accepted: November 6, 2022
  4. Accepted Manuscript published: November 8, 2022 (version 1)
  5. Version of Record published: November 18, 2022 (version 2)

Copyright

© 2022, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,718
    Page views
  • 389
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chan Hee J Choi
  2. William Barr
  3. Samir Zaman
  4. Corey Model
  5. Annsea Park
  6. Mascha Koenen
  7. Zeran Lin
  8. Sarah K Szwed
  9. François Marchildon
  10. Audrey Crane
  11. Thomas S Carroll
  12. Henrik Molina
  13. Paul Cohen
(2022)
LRG1 is an adipokine that promotes insulin sensitivity and suppresses inflammation
eLife 11:e81559.
https://doi.org/10.7554/eLife.81559

Further reading

    1. Cell Biology
    2. Developmental Biology
    Simon Schneider, Andjela Kovacevic ... Hubert Schorle
    Research Article

    Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas, Benjamin A Himes, Nikolaus Grigorieff
    Research Advance

    Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.