Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling

  1. Benjamin Barsi-Rhyne
  2. Aashish Manglik  Is a corresponding author
  3. Mark von Zastrow  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

β-arrestins are master regulators of cellular signaling that operate by desensitizing ligand-activated G protein-coupled receptors (GPCRs) at the plasma membrane and promoting their subsequent endocytosis. The endocytic activity of β-arrestins is ligand-dependent, triggered by GPCR binding, and increasingly recognized to have a multitude of downstream signaling and trafficking consequences that are specifically programmed by the bound GPCR. However, only one biochemical 'mode' for GPCR-mediated triggering of the endocytic activity is presently known- displacement of the β-arrestin C-terminus (CT) to expose CCP-binding determinants that are masked in the inactive state. Here we revise this view by uncovering a second mode of GPCR-triggered endocytic activity that is independent of the β-arrestin CT and, instead, requires the cytosolic base of the β-arrestin C-lobe (CLB). We further show each of the discrete endocytic modes is triggered in a receptor-specific manner, with GPCRs that bind β-arrestin transiently ('class A') primarily triggering the CLB-dependent mode and GPCRs that bind more stably ('class B') triggering both the CT and CLB -dependent modes in combination. Moreover, we show that different modes have opposing effects on the net signaling output of receptors- with the CLB-dependent mode promoting rapid signal desensitization and the CT-dependent mode enabling prolonged signaling. Together, these results fundamentally revise understanding of how β-arrestins operate as efficient endocytic adaptors while facilitating diversity and flexibility in the control of cell signaling.

Data availability

All numerical data used to generate the figures has been included in the supporting data file. Source data for each figure panel is included as a separate worksheet in the combined excel document.

Article and author information

Author details

  1. Benjamin Barsi-Rhyne

    Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aashish Manglik

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    For correspondence
    Aashish.Manglik@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark von Zastrow

    Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, United States
    For correspondence
    mark.vonzastrow@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1375-6926

Funding

NIH Office of the Director (DP5OD023048)

  • Aashish Manglik

National Institutes of Health (R01DA010711)

  • Mark von Zastrow

National Institutes of Health (R01DA012864)

  • Mark von Zastrow

American Heart Association (19PRE34380570)

  • Benjamin Barsi-Rhyne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Barsi-Rhyne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,568
    views
  • 504
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Barsi-Rhyne
  2. Aashish Manglik
  3. Mark von Zastrow
(2022)
Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling
eLife 11:e81563.
https://doi.org/10.7554/eLife.81563

Share this article

https://doi.org/10.7554/eLife.81563

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.