Community composition shapes microbial-specific phenotypes in a cystic fibrosis polymicrobial model system

  1. Fabrice Jean-Pierre  Is a corresponding author
  2. Thomas H Hampton
  3. Daniel Schultz
  4. Deborah A Hogan
  5. Marie-Christine Groleau
  6. Eric Déziel
  7. George A O'Toole  Is a corresponding author
  1. Dartmouth College, United States
  2. Institut National de la Recherche Scientifique, Canada

Abstract

Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa LasR mutant is increased production of phenazines. Our work support the importance of studying a clinically-relevant model polymicrobial biofilms to understand community-specific traits relevant to infections.

Data availability

Figure 1 - figure supplement 3 & Source Data 1 contains the numerical data used to generate the figure.Figure 1 - figure supplement 4 & Source Data 2 contains numerical data used to generate the figure.Source Code 1 contains the script used to generate Figure 1, Figure 1 - figure supplement 1 and Figure 1 - figure supplement 4.Source Code 2 contains the script used to generate the modeling data presented Figure 1 - figure supplement 1.

The following previously published data sets were used

Article and author information

Author details

  1. Fabrice Jean-Pierre

    Department of Microbiology and Immunology, Dartmouth College, Hanover, United States
    For correspondence
    fabricejean-pierre@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas H Hampton

    Department of Microbiology and Immunology, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Schultz

    Department of Microbiology and Immunology, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deborah A Hogan

    Department of Microbiology and Immunology, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie-Christine Groleau

    Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Eric Déziel

    Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. George A O'Toole

    Department of Microbiology and Immunology, Dartmouth College, Hanover, United States
    For correspondence
    georgeo@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2861-4392

Funding

Cystic Fibrosis Foundation (JEAN21F0)

  • Fabrice Jean-Pierre

National Institutes of Health (R01 AI155424)

  • George A O'Toole

Canadian Institutes of Health Research (MOP-142466)

  • Eric Déziel

National Institutes of Health (5 P20 GM130454)

  • Daniel Schultz

Cystic Fibrosis Foundation (HOGAN19G0)

  • Deborah A Hogan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Jean-Pierre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,404
    views
  • 444
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabrice Jean-Pierre
  2. Thomas H Hampton
  3. Daniel Schultz
  4. Deborah A Hogan
  5. Marie-Christine Groleau
  6. Eric Déziel
  7. George A O'Toole
(2023)
Community composition shapes microbial-specific phenotypes in a cystic fibrosis polymicrobial model system
eLife 12:e81604.
https://doi.org/10.7554/eLife.81604

Share this article

https://doi.org/10.7554/eLife.81604

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Microbiology and Infectious Disease
    Ziyu Wen, Pingchao Li ... Caijun Sun
    Research Article

    The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.