Response outcome gates the effect of spontaneous cortical state fluctuations on perceptual decisions

Abstract

Sensory responses of cortical neurons are more discriminable when evoked on a baseline of desynchronized spontaneous activity, but cortical desynchronization has not generally been associated with more accurate perceptual decisions. Here we show that mice perform more accurate auditory judgements when activity in the auditory cortex is elevated and desynchronized before stimulus onset, but only if the previous trial was an error, and that this relationship is occluded if previous outcome is ignored. We confirmed that the outcome-dependent effect of brain state on performance is neither due to idiosyncratic associations between the slow components of either signal, nor to the existence of specific cortical states evident only after errors. Instead, errors appear to gate the effect of cortical state fluctuations on discrimination accuracy. Neither facial movements nor pupil size during the baseline were associated with accuracy, but they were predictive of measures of responsivity, such as the probability of not responding to the stimulus or of responding prematurely. These results suggest that the functional role of cortical state on behavior is dynamic and constantly regulated by performance monitoring systems.

Data availability

All data and code necessary to reproduce the main findings of this manuscript are deposited on Dryad (https://dx.doi.org/10.5061/dryad.w0vt4b8vf).

The following data sets were generated

Article and author information

Author details

  1. Davide Reato

    Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
    For correspondence
    davide.reato@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5362-4616
  2. Raphael Steinfeld

    Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. André Tacão-Monteiro

    Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfonso Renart

    Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
    For correspondence
    alfonso.renart@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7916-9930

Funding

Fundação para a Ciência e a Tecnologia (Postdoctoral fellowship,SFRH/BPD/119737/2016)

  • Davide Reato

H2020 Marie Skłodowska-Curie Actions (Postdoctoral fellowship,H2020-MSCA-IF-2016 75381)

  • Davide Reato

Fundação para a Ciência e a Tecnologia (Doctoral fellowships)

  • Raphael Steinfeld

Fundação Champalimaud

  • Alfonso Renart

Marie Curie Career Integration Grant (PCIG11-GA-2012-322339)

  • Alfonso Renart

Human Frontier Science Program (Young Investigator Award,RGY0089)

  • Alfonso Renart

EU FP7 (ICT-2011-9-600925)

  • Alfonso Renart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were reviewed and approved by the Champalimaud Centre for the Unknown animalwelfare committee and approved by the Portuguese Direção Geral de Veterinária (Ref. No.6090421/000/000/2019).

Copyright

© 2023, Reato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 727
    views
  • 96
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Davide Reato
  2. Raphael Steinfeld
  3. André Tacão-Monteiro
  4. Alfonso Renart
(2023)
Response outcome gates the effect of spontaneous cortical state fluctuations on perceptual decisions
eLife 12:e81774.
https://doi.org/10.7554/eLife.81774

Share this article

https://doi.org/10.7554/eLife.81774

Further reading

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.