MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice

Abstract

Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE42357.

The following data sets were generated

Article and author information

Author details

  1. Greta Rossi

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriele Ordazzo

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1850-0375
  3. Niccolò N Vanni

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Valerio Castoldi

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Angelo Iannielli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Dario Di Silvestre

    Institute of Technologies in Biomedicine, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Edoardo Bellini

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9766-7685
  8. Letizia Bernardo

    Institute of Technologies in Biomedicine, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Serena Giannelli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Mirko Luoni

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5006-1827
  11. Sharon Muggeo

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7135-9780
  12. Leocani Letizia

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  13. PierLuigi Mauri

    Institute of Technologies in Biomedicine, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Vania Broccoli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    broccoli.vania@hsr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4050-0926

Funding

Italian Ministry of Health (RF2019-12370396)

  • PierLuigi Mauri

Elixir Implementation Study Proteomics 2021-23 (EISP-23-072)

  • PierLuigi Mauri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Rossi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,343
    views
  • 199
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Greta Rossi
  2. Gabriele Ordazzo
  3. Niccolò N Vanni
  4. Valerio Castoldi
  5. Angelo Iannielli
  6. Dario Di Silvestre
  7. Edoardo Bellini
  8. Letizia Bernardo
  9. Serena Giannelli
  10. Mirko Luoni
  11. Sharon Muggeo
  12. Leocani Letizia
  13. PierLuigi Mauri
  14. Vania Broccoli
(2023)
MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice
eLife 12:e81779.
https://doi.org/10.7554/eLife.81779

Share this article

https://doi.org/10.7554/eLife.81779

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.