Molecular and spatial profiling of the paraventricular nucleus of the thalamus

  1. Claire Gao  Is a corresponding author
  2. Chiraag A Gohel
  3. Yan Leng
  4. Jun Ma
  5. David Goldman
  6. Ariel J Levine
  7. Mario A Penzo  Is a corresponding author
  1. National Institute of Mental Health, United States
  2. National Institute on Alcohol Abuse and Alcoholism, United States
  3. National Institute of Child Health and Human Development, United States

Abstract

The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remains unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of thalamus yielded novel insight into the PVT's connectivity with cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.

Data availability

All RNA-seq data generated in our study have been deposited into the Gene Expression Omnibus repository (GSE208707). Raw images of RNAscope experiments are publicly available at: https://figshare.com/s/e2918829cabfdd0392fb.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Claire Gao

    National Institute of Mental Health, Bethesda, United States
    For correspondence
    claire.gao@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Chiraag A Gohel

    National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yan Leng

    National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Ma

    National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Goldman

    National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ariel J Levine

    National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0335-0730
  7. Mario A Penzo

    National Institute of Mental Health, Bethesda, United States
    For correspondence
    mario.penzo@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5368-1802

Funding

National Institute of Mental Health (1ZIAMH002950)

  • Mario A Penzo

National Institute of Neurological Disorders and Stroke (ZIANS003153)

  • Ariel J Levine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the Guide for the Care and Use of Laboratory Animals and were approved by the National Institute of Mental Health Animal Care and Use Committee. (See Methods - Mice)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,191
    views
  • 616
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claire Gao
  2. Chiraag A Gohel
  3. Yan Leng
  4. Jun Ma
  5. David Goldman
  6. Ariel J Levine
  7. Mario A Penzo
(2023)
Molecular and spatial profiling of the paraventricular nucleus of the thalamus
eLife 12:e81818.
https://doi.org/10.7554/eLife.81818

Share this article

https://doi.org/10.7554/eLife.81818

Further reading

    1. Neuroscience
    Jian Dong, Mian Chen ... Matthijs Verhage
    Research Article

    Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.