Molecular characterization of the intact mouse muscle spindle using a multi-omics approach

  1. Bavat Bornstein  Is a corresponding author
  2. Lia Heinemann-Yerushalmi
  3. Sharon Krief
  4. Ruth Adler
  5. Bareket Dassa
  6. Dena Leshkowitz
  7. Minchul Kim
  8. Guy Bewick
  9. Robert W Banks
  10. Elazar Zelzer  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Max Delbrueck Center for Molecular Medicine, Germany
  3. University of Aberdeen, United Kingdom
  4. Durham University, United Kingdom

Abstract

The proprioceptive system is essential for the control of coordinated movement, posture and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.

Data availability

Sequencing data have been deposited in GEO under accession number GSE208147.The raw data of proteomic profiling were deposited in the ProteomeXchange via the Proteomic Identification Database (PRIDE partner repository)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Bavat Bornstein

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    bavat.bornstein@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
  2. Lia Heinemann-Yerushalmi

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Sharon Krief

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruth Adler

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Bareket Dassa

    Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Dena Leshkowitz

    Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Minchul Kim

    Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Guy Bewick

    Institute of Medical Sciences, University of Aberdeen, Durham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert W Banks

    Department of Biosciences, Durham University, Durham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1614-6488
  10. Elazar Zelzer

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    eli.zelzer@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1584-6602

Funding

The David and Fela Shapell Family Center for Genetic Disorders Research

  • Elazar Zelzer

The Julie and Eric Borman Family Research Funds

  • Elazar Zelzer

The Nella and Leon Benoziyo Center for Neurological Diseases

  • Elazar Zelzer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving mice were approved by the Institutional Animal Care and Use Committee (IACUC) of the Weizmann Institute (#02180222-2).

Copyright

© 2023, Bornstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,827
    views
  • 271
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bavat Bornstein
  2. Lia Heinemann-Yerushalmi
  3. Sharon Krief
  4. Ruth Adler
  5. Bareket Dassa
  6. Dena Leshkowitz
  7. Minchul Kim
  8. Guy Bewick
  9. Robert W Banks
  10. Elazar Zelzer
(2023)
Molecular characterization of the intact mouse muscle spindle using a multi-omics approach
eLife 12:e81843.
https://doi.org/10.7554/eLife.81843

Share this article

https://doi.org/10.7554/eLife.81843

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.