Molecular and anatomical characterization of parabrachial neurons and their axonal projections
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Data availability
Raw and preprocessed data for scRNA-seq: NCBI GEO accession number GSE207708Code for analysis of scRNA-Seq data: https://github.com/stuberlab/Pauli-Chen-Basiri-et-al-2022Raw and normalized data for RiboTag: NCBI GEO accession number GSE207153Images from RNAscope and all tracing experiments: Zenodo DOI: 10.5281/zenodo.6707404; https://doi.org/10.5281/zenodo.6707404
-
Molecular and Anatomical Characterization of Parabrachial Neurons and Their Axonal ProjectionsNCBI Gene Expression Omnibus, GSE207708.
-
Gene expression profiling of Calca neurons in the parabrachial nucleus (PBN)NCBI Gene Expression Omnibus, GSE207153.
-
Molecular and Anatomical Characterization of Parabrachial Neurons and Their Axonal ProjectionsZenodo, DOI 10.5281/zenodo.6707404.
Article and author information
Author details
Funding
National Institutes of Health (R01-DA24908)
- Richard D Palmiter
National Institutes of Health (R01-DA032750)
- Garret D Stuber
National Institutes of Health (R01-DA038168)
- Garret D Stuber
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were approved by the Institutional Animals Care and Use Committee at the University of Washington (Protocol #2183-02).
Copyright
© 2022, Pauli et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,500
- views
-
- 1,145
- downloads
-
- 88
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Circuit function results from both intrinsic conductances of network neurons and the synaptic conductances that connect them. In models of neural circuits, different combinations of maximal conductances can give rise to similar activity. We compared the robustness of a neural circuit to changes in their intrinsic versus synaptic conductances. To address this, we performed a sensitivity analysis on a population of conductance-based models of the pyloric network from the crustacean stomatogastric ganglion (STG). The model network consists of three neurons with nine currents: a sodium current (Na), three potassium currents (Kd, KCa, KA), two calcium currents (CaS and CaT), a hyperpolarization-activated current (H), a non-voltage-gated leak current (leak), and a neuromodulatory current (MI). The model cells are connected by seven synapses of two types, glutamatergic and cholinergic. We produced one hundred models of the pyloric network that displayed similar activities with values of maximal conductances distributed over wide ranges. We evaluated the robustness of each model to changes in their maximal conductances. We found that individual models have different sensitivities to changes in their maximal conductances, both in their intrinsic and synaptic conductances. As expected, the models become less robust as the extent of the changes increases. Despite quantitative differences in their robustness, we found that in all cases, the model networks are more sensitive to the perturbation of their intrinsic conductances than their synaptic conductances.
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.