Prediction of diabetic kidney disease risk using machine learning models: a population-based cohort study of Asian adults

  1. Charumathi Sabanayagam  Is a corresponding author
  2. Feng He
  3. Simon Nusinovici
  4. Jialiang Li
  5. Cynthia Lim
  6. Gavin Tan
  7. Ching Yu Cheng
  1. Singapore Eye Research Institute, Singapore
  2. National University of Singapore, Singapore
  3. Singapore General Hospital, Singapore

Abstract

Background: Machine learning (ML) techniques improve disease prediction by identifying the most relevant features in multi-dimensional data. We compared the accuracy of ML algorithms for predicting incident diabetic kidney disease (DKD).

Methods: We utilized longitudinal data from 1365 Chinese, Malay and Indian participants aged 40-80 years with diabetes but free of DKD who participated in the baseline and 6-year follow-up visit of the Singapore Epidemiology of Eye Diseases Study (2004-2017). Incident DKD (11.9%) was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2 with at least 25% decrease in eGFR at follow-up from baseline. 339 features including participant characteristics, retinal imaging, genetic and blood metabolites were used as predictors. Performances of several ML models were compared to each other and to logic regression (LR) model based on established features of DKD (age, sex, ethnicity, duration of diabetes, systolic blood pressure, HbA1c, and body mass index) using area under the receiver operating characteristic curve (AUC).

Results: ML model, Elastic Net (EN) had the best AUC (95% confidence interval) of 0.851 (0.847-0.856), which was 7.0% relatively higher than by LR 0.795 (0.790-0.801). Sensitivity and specificity of EN were 88.2% and 65.9% vs. 73.0% and 72.8% by LR. The top-15 predictors included age, ethnicity, antidiabetic medication, hypertension, diabetic retinopathy, systolic blood pressure, HbA1c, eGFR and metabolites related to lipids, lipoproteins, fatty acids and ketone bodies.

Conclusions: Our results showed ML together with feature selection improves prediction accuracy of DKD risk in an asymptomatic stable population and identifies novel risk factors including metabolites.

Funding: This study was supported by the National Medical Research Council, NMRC/OFLCG/001/2017 and NMRC/HCSAINV/MOH-001019-00. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary materials. The individual participant-level data cannot be shared publicly due to privacy and confidentiality concerns. However, de-identified data may be available upon request with a project proposal to qualified individuals, subject to approval by the Singapore Eye Research Institute and access will require a data sharing agreement. Interested researchers can send data access requests to Prof. Ching-Yu Cheng at the Singapore Eye Research Institute using the following email address: cheng.ching.yu@seri.com.sgProcessed version of the datasets are provided in Supplementary Tables S1-S5.

Article and author information

Author details

  1. Charumathi Sabanayagam

    Singapore Eye Research Institute, Singapore, Singapore
    For correspondence
    charumathi.sabanayagam@seri.com.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4042-4719
  2. Feng He

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Simon Nusinovici

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Jialiang Li

    Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Cynthia Lim

    Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Gavin Tan

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Ching Yu Cheng

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Medical Research Council (NMRC/OFLCG/001/2017)

  • Gavin Tan

National Medical Research Council (NMRC/HCSAINV/MOH-001019-00)

  • Charumathi Sabanayagam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: SEED was conducted in accordance with the Declaration of Helsinki and was approved by the SingHealth Centralised Institutional Review Board [2018/2717, 2018/ 2921, 2012/487/A, 2015/2279, 2018/2006, 2018/2594, 2018/2570]. Informed consent was obtained from all participants.

Copyright

© 2023, Sabanayagam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,299
    views
  • 293
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charumathi Sabanayagam
  2. Feng He
  3. Simon Nusinovici
  4. Jialiang Li
  5. Cynthia Lim
  6. Gavin Tan
  7. Ching Yu Cheng
(2023)
Prediction of diabetic kidney disease risk using machine learning models: a population-based cohort study of Asian adults
eLife 12:e81878.
https://doi.org/10.7554/eLife.81878

Share this article

https://doi.org/10.7554/eLife.81878

Further reading

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Amanda C Perofsky, John Huddleston ... Cécile Viboud
    Research Article

    Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.