Prediction of diabetic kidney disease risk using machine learning models: a population-based cohort study of Asian adults

  1. Charumathi Sabanayagam  Is a corresponding author
  2. Feng He
  3. Simon Nusinovici
  4. Jialiang Li
  5. Cynthia Lim
  6. Gavin Tan
  7. Ching Yu Cheng
  1. Singapore Eye Research Institute, Singapore
  2. National University of Singapore, Singapore
  3. Singapore General Hospital, Singapore

Abstract

Background: Machine learning (ML) techniques improve disease prediction by identifying the most relevant features in multi-dimensional data. We compared the accuracy of ML algorithms for predicting incident diabetic kidney disease (DKD).

Methods: We utilized longitudinal data from 1365 Chinese, Malay and Indian participants aged 40-80 years with diabetes but free of DKD who participated in the baseline and 6-year follow-up visit of the Singapore Epidemiology of Eye Diseases Study (2004-2017). Incident DKD (11.9%) was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2 with at least 25% decrease in eGFR at follow-up from baseline. 339 features including participant characteristics, retinal imaging, genetic and blood metabolites were used as predictors. Performances of several ML models were compared to each other and to logic regression (LR) model based on established features of DKD (age, sex, ethnicity, duration of diabetes, systolic blood pressure, HbA1c, and body mass index) using area under the receiver operating characteristic curve (AUC).

Results: ML model, Elastic Net (EN) had the best AUC (95% confidence interval) of 0.851 (0.847-0.856), which was 7.0% relatively higher than by LR 0.795 (0.790-0.801). Sensitivity and specificity of EN were 88.2% and 65.9% vs. 73.0% and 72.8% by LR. The top-15 predictors included age, ethnicity, antidiabetic medication, hypertension, diabetic retinopathy, systolic blood pressure, HbA1c, eGFR and metabolites related to lipids, lipoproteins, fatty acids and ketone bodies.

Conclusions: Our results showed ML together with feature selection improves prediction accuracy of DKD risk in an asymptomatic stable population and identifies novel risk factors including metabolites.

Funding: This study was supported by the National Medical Research Council, NMRC/OFLCG/001/2017 and NMRC/HCSAINV/MOH-001019-00. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary materials. The individual participant-level data cannot be shared publicly due to privacy and confidentiality concerns. However, de-identified data may be available upon request with a project proposal to qualified individuals, subject to approval by the Singapore Eye Research Institute and access will require a data sharing agreement. Interested researchers can send data access requests to Prof. Ching-Yu Cheng at the Singapore Eye Research Institute using the following email address: cheng.ching.yu@seri.com.sgProcessed version of the datasets are provided in Supplementary Tables S1-S5.

Article and author information

Author details

  1. Charumathi Sabanayagam

    Singapore Eye Research Institute, Singapore, Singapore
    For correspondence
    charumathi.sabanayagam@seri.com.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4042-4719
  2. Feng He

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Simon Nusinovici

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Jialiang Li

    Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Cynthia Lim

    Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Gavin Tan

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Ching Yu Cheng

    Singapore Eye Research Institute, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Medical Research Council (NMRC/OFLCG/001/2017)

  • Gavin Tan

National Medical Research Council (NMRC/HCSAINV/MOH-001019-00)

  • Charumathi Sabanayagam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: SEED was conducted in accordance with the Declaration of Helsinki and was approved by the SingHealth Centralised Institutional Review Board [2018/2717, 2018/ 2921, 2012/487/A, 2015/2279, 2018/2006, 2018/2594, 2018/2570]. Informed consent was obtained from all participants.

Copyright

© 2023, Sabanayagam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,357
    views
  • 304
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charumathi Sabanayagam
  2. Feng He
  3. Simon Nusinovici
  4. Jialiang Li
  5. Cynthia Lim
  6. Gavin Tan
  7. Ching Yu Cheng
(2023)
Prediction of diabetic kidney disease risk using machine learning models: a population-based cohort study of Asian adults
eLife 12:e81878.
https://doi.org/10.7554/eLife.81878

Share this article

https://doi.org/10.7554/eLife.81878

Further reading

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.