Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules

  1. Lei Yang
  2. Jingtao Zhang
  3. Sen Liu
  4. Yanning Zhang
  5. Li Wang
  6. Xiaotong Wang
  7. Shanshan Wang
  8. Ke Li
  9. Mengping Wei  Is a corresponding author
  10. Chen Zhang  Is a corresponding author
  1. Capital Medical University, China
  2. Peking University, China

Abstract

Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to providing a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (Syt1-tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of Syt1-tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In olfactory bulb, the SYT1-tdTomato signals are highly enriched in glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from Syt1-tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from Syt1-tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the Syt1-tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 to 6

Article and author information

Author details

  1. Lei Yang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingtao Zhang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sen Liu

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yanning Zhang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Li Wang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaotong Wang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Shanshan Wang

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ke Li

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Mengping Wei

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    For correspondence
    weimengping@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Chen Zhang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    For correspondence
    czhang@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7940-8054

Funding

National Natural Science Foundation of China (81925011)

  • Chen Zhang

National Natural Science Foundation of China (92149304)

  • Chen Zhang

National Natural Science Foundation of China (32170954)

  • Mengping Wei

National Natural Science Foundation of China (32100763)

  • Lei Yang

Key-Area Research and Development Program of Guangdong Province (2019B030335001)

  • Chen Zhang

Capital Medical University (PXM2021_014226_000026)

  • Chen Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Stanford University, United States

Ethics

Animal experimentation: This study used C57BL/6J WT mice and Syt1-tdTomato transgenic mice (P0-P56). Animals were housed at room temperature (RT) 20 {plus minus} 2{degree sign}C, with a 12-hour light-dark cycle, air circulating, and unrestricted access to food and water. All animal studies were conducted according to the Guide for the Care and Use of Laboratory Animals (8th edition) and approved by the Animal Experiments and Experimental Animal Welfare Committee of Capital Medical University (Approval ID: AEEI-2019-013).

Version history

  1. Received: July 14, 2022
  2. Preprint posted: July 21, 2022 (view preprint)
  3. Accepted: March 5, 2024
  4. Accepted Manuscript published: March 7, 2024 (version 1)
  5. Version of Record published: March 18, 2024 (version 2)

Copyright

© 2024, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 675
    views
  • 149
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lei Yang
  2. Jingtao Zhang
  3. Sen Liu
  4. Yanning Zhang
  5. Li Wang
  6. Xiaotong Wang
  7. Shanshan Wang
  8. Ke Li
  9. Mengping Wei
  10. Chen Zhang
(2024)
Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules
eLife 13:e81884.
https://doi.org/10.7554/eLife.81884

Share this article

https://doi.org/10.7554/eLife.81884

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.

    1. Neuroscience
    Paula Banca, Maria Herrojo Ruiz ... Trevor W Robbins
    Research Article

    This study investigates the goal/habit imbalance theory of compulsion in obsessive-compulsive disorder (OCD), which postulates enhanced habit formation, increased automaticity, and impaired goal/habit arbitration. It directly tests these hypotheses using newly developed behavioral tasks. First, OCD patients and healthy participants were trained daily for a month using a smartphone app to perform chunked action sequences. Despite similar procedural learning and attainment of habitual performance (measured by an objective automaticity criterion) by both groups, OCD patients self-reported higher subjective habitual tendencies via a recently developed questionnaire. Subsequently, in a re-evaluation task assessing choices between established automatic and novel goal-directed actions, both groups were sensitive to re-evaluation based on monetary feedback. However, OCD patients, especially those with higher compulsive symptoms and habitual tendencies, showed a clear preference for trained/habitual sequences when choices were based on physical effort, possibly due to their higher attributed intrinsic value. These patients also used the habit-training app more extensively and reported symptom relief post-study. The tendency to attribute higher intrinsic value to familiar actions may be a potential mechanism leading to compulsions and an important addition to the goal/habit imbalance hypothesis in OCD. We also highlight the potential of smartphone app training as a habit reversal therapeutic tool.