Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules

  1. Lei Yang
  2. Jingtao Zhang
  3. Sen Liu
  4. Yanning Zhang
  5. Li Wang
  6. Xiaotong Wang
  7. Shanshan Wang
  8. Ke Li
  9. Mengping Wei  Is a corresponding author
  10. Chen Zhang  Is a corresponding author
  1. Capital Medical University, China
  2. Peking University, China

Abstract

Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to providing a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (Syt1-tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of Syt1-tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In olfactory bulb, the SYT1-tdTomato signals are highly enriched in glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from Syt1-tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from Syt1-tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the Syt1-tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 to 6

Article and author information

Author details

  1. Lei Yang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingtao Zhang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sen Liu

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yanning Zhang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Li Wang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaotong Wang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Shanshan Wang

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ke Li

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Mengping Wei

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    For correspondence
    weimengping@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Chen Zhang

    School of Basic Medical Sciences, Capital Medical University, Beijing, China
    For correspondence
    czhang@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7940-8054

Funding

National Natural Science Foundation of China (81925011)

  • Chen Zhang

National Natural Science Foundation of China (92149304)

  • Chen Zhang

National Natural Science Foundation of China (32170954)

  • Mengping Wei

National Natural Science Foundation of China (32100763)

  • Lei Yang

Key-Area Research and Development Program of Guangdong Province (2019B030335001)

  • Chen Zhang

Capital Medical University (PXM2021_014226_000026)

  • Chen Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study used C57BL/6J WT mice and Syt1-tdTomato transgenic mice (P0-P56). Animals were housed at room temperature (RT) 20 {plus minus} 2{degree sign}C, with a 12-hour light-dark cycle, air circulating, and unrestricted access to food and water. All animal studies were conducted according to the Guide for the Care and Use of Laboratory Animals (8th edition) and approved by the Animal Experiments and Experimental Animal Welfare Committee of Capital Medical University (Approval ID: AEEI-2019-013).

Copyright

© 2024, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,061
    views
  • 188
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lei Yang
  2. Jingtao Zhang
  3. Sen Liu
  4. Yanning Zhang
  5. Li Wang
  6. Xiaotong Wang
  7. Shanshan Wang
  8. Ke Li
  9. Mengping Wei
  10. Chen Zhang
(2024)
Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules
eLife 13:e81884.
https://doi.org/10.7554/eLife.81884

Share this article

https://doi.org/10.7554/eLife.81884

Further reading

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.

    1. Neuroscience
    Rossella Conti, Céline Auger
    Research Article

    Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.