A genetic variant of fatty acid amide hydrolase (FAAH) exacerbates hormone-mediated orexigenic feeding in mice

  1. Georgia Balsevich  Is a corresponding author
  2. Gavin N Petrie
  3. Daniel E Heinz
  4. Arashdeep Singh
  5. Robert J Aukema
  6. Avery C Hunker
  7. Haley A Vecchiarelli
  8. Hiulan Yau
  9. Martin Sticht
  10. Roger J Thompson
  11. Francis S Lee
  12. Larry S Zweifel
  13. Prasanth K Chelikani
  14. Nils C Gassen
  15. Matthew N Hill  Is a corresponding author
  1. University of Calgary, Canada
  2. University Hospital Bonn, Germany
  3. University of Pennsylvania, United States
  4. University of Washington, United States
  5. Weill Cornell Medical College, United States
  6. Texas Tech University, United States

Abstract

Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide. A polymorphism in FAAH (FAAH C385A) reduces FAAH expression, increases anandamide levels, and increases the risk of obesity. Nevertheless, some studies have found no association between FAAH C385A and obesity. We investigated whether the environmental context governs the impact of FAAH C385A on metabolic outcomes. Using a C385A knock-in mouse model, we found that FAAH A/A mice are more susceptible to glucocorticoid-induced hyperphagia, weight gain, and activation of hypothalamic AMPK. AMPK inhibition occluded the amplified hyperphagic response to glucocorticoids in FAAH A/A mice. FAAH knockdown exclusively in AgRP neurons mimicked the exaggerated feeding response of FAAH A/A mice to glucocorticoids. FAAH A/A mice likewise presented exaggerated orexigenic responses to ghrelin, while FAAH knockdown in AgRP neurons blunted leptin anorectic responses. Together, the FAAH A/A genotype amplifies orexigenic responses and decreases anorexigenic responses, providing a putative mechanism explaining the diverging human findings.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and supplemental figures.

Article and author information

Author details

  1. Georgia Balsevich

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    For correspondence
    georgia.balsevich@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
  2. Gavin N Petrie

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel E Heinz

    Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7103-9621
  4. Arashdeep Singh

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2477-1438
  5. Robert J Aukema

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3490-3390
  6. Avery C Hunker

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Haley A Vecchiarelli

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6331-6107
  8. Hiulan Yau

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Martin Sticht

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Roger J Thompson

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7019-7246
  11. Francis S Lee

    Psychiatry, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7108-9650
  12. Larry S Zweifel

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3465-5331
  13. Prasanth K Chelikani

    Texas Tech University, Amarillo, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Nils C Gassen

    Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Matthew N Hill

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    For correspondence
    mnhill@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7144-9209

Funding

Natural Sciences and Engineering Research Council of Canada

  • Matthew N Hill

American Heart Association (953881)

  • Prasanth K Chelikani

Canadian Institutes of Health Research

  • Georgia Balsevich

Alberta Innovates

  • Georgia Balsevich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were carried out in compliance with the ARRIVE guidelines. All protocols had been approved by the University of Calgary Animal Care Committee and were carried out in accordance with Canadian Council on Animal Care (under protocols AC16-0171, AC16-0053, AC20-0003, and AC20-0090). All surgery was performed under Isofluorane anesthesia and Metacam was given as a post-operative analgesic.

Copyright

© 2023, Balsevich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,124
    views
  • 142
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georgia Balsevich
  2. Gavin N Petrie
  3. Daniel E Heinz
  4. Arashdeep Singh
  5. Robert J Aukema
  6. Avery C Hunker
  7. Haley A Vecchiarelli
  8. Hiulan Yau
  9. Martin Sticht
  10. Roger J Thompson
  11. Francis S Lee
  12. Larry S Zweifel
  13. Prasanth K Chelikani
  14. Nils C Gassen
  15. Matthew N Hill
(2023)
A genetic variant of fatty acid amide hydrolase (FAAH) exacerbates hormone-mediated orexigenic feeding in mice
eLife 12:e81919.
https://doi.org/10.7554/eLife.81919

Share this article

https://doi.org/10.7554/eLife.81919

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.