A genetic variant of fatty acid amide hydrolase (FAAH) exacerbates hormone-mediated orexigenic feeding in mice

  1. Georgia Balsevich  Is a corresponding author
  2. Gavin N Petrie
  3. Daniel E Heinz
  4. Arashdeep Singh
  5. Robert J Aukema
  6. Avery C Hunker
  7. Haley A Vecchiarelli
  8. Hiulan Yau
  9. Martin Sticht
  10. Roger J Thompson
  11. Francis S Lee
  12. Larry S Zweifel
  13. Prasanth K Chelikani
  14. Nils C Gassen
  15. Matthew N Hill  Is a corresponding author
  1. University of Calgary, Canada
  2. University Hospital Bonn, Germany
  3. University of Pennsylvania, United States
  4. University of Washington, United States
  5. Weill Cornell Medical College, United States
  6. Texas Tech University, United States

Abstract

Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide. A polymorphism in FAAH (FAAH C385A) reduces FAAH expression, increases anandamide levels, and increases the risk of obesity. Nevertheless, some studies have found no association between FAAH C385A and obesity. We investigated whether the environmental context governs the impact of FAAH C385A on metabolic outcomes. Using a C385A knock-in mouse model, we found that FAAH A/A mice are more susceptible to glucocorticoid-induced hyperphagia, weight gain, and activation of hypothalamic AMPK. AMPK inhibition occluded the amplified hyperphagic response to glucocorticoids in FAAH A/A mice. FAAH knockdown exclusively in AgRP neurons mimicked the exaggerated feeding response of FAAH A/A mice to glucocorticoids. FAAH A/A mice likewise presented exaggerated orexigenic responses to ghrelin, while FAAH knockdown in AgRP neurons blunted leptin anorectic responses. Together, the FAAH A/A genotype amplifies orexigenic responses and decreases anorexigenic responses, providing a putative mechanism explaining the diverging human findings.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and supplemental figures.

Article and author information

Author details

  1. Georgia Balsevich

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    For correspondence
    georgia.balsevich@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
  2. Gavin N Petrie

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel E Heinz

    Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7103-9621
  4. Arashdeep Singh

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2477-1438
  5. Robert J Aukema

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3490-3390
  6. Avery C Hunker

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Haley A Vecchiarelli

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6331-6107
  8. Hiulan Yau

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Martin Sticht

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Roger J Thompson

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7019-7246
  11. Francis S Lee

    Psychiatry, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7108-9650
  12. Larry S Zweifel

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3465-5331
  13. Prasanth K Chelikani

    Texas Tech University, Amarillo, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Nils C Gassen

    Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Matthew N Hill

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    For correspondence
    mnhill@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7144-9209

Funding

Natural Sciences and Engineering Research Council of Canada

  • Matthew N Hill

American Heart Association (953881)

  • Prasanth K Chelikani

Canadian Institutes of Health Research

  • Georgia Balsevich

Alberta Innovates

  • Georgia Balsevich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: All studies were carried out in compliance with the ARRIVE guidelines. All protocols had been approved by the University of Calgary Animal Care Committee and were carried out in accordance with Canadian Council on Animal Care (under protocols AC16-0171, AC16-0053, AC20-0003, and AC20-0090). All surgery was performed under Isofluorane anesthesia and Metacam was given as a post-operative analgesic.

Version history

  1. Received: July 15, 2022
  2. Preprint posted: August 11, 2022 (view preprint)
  3. Accepted: April 6, 2023
  4. Accepted Manuscript published: April 11, 2023 (version 1)
  5. Version of Record published: May 4, 2023 (version 2)

Copyright

© 2023, Balsevich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 944
    views
  • 122
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georgia Balsevich
  2. Gavin N Petrie
  3. Daniel E Heinz
  4. Arashdeep Singh
  5. Robert J Aukema
  6. Avery C Hunker
  7. Haley A Vecchiarelli
  8. Hiulan Yau
  9. Martin Sticht
  10. Roger J Thompson
  11. Francis S Lee
  12. Larry S Zweifel
  13. Prasanth K Chelikani
  14. Nils C Gassen
  15. Matthew N Hill
(2023)
A genetic variant of fatty acid amide hydrolase (FAAH) exacerbates hormone-mediated orexigenic feeding in mice
eLife 12:e81919.
https://doi.org/10.7554/eLife.81919

Share this article

https://doi.org/10.7554/eLife.81919

Further reading

    1. Neuroscience
    Max Schulz, Malte Wöstmann
    Insight

    Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.

    1. Neuroscience
    Tara Ghafari, Cecilia Mazzetti ... Ole Jensen
    Research Article

    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.