Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice

Abstract

Thyroid hormone (T3) and its nuclear receptors (TR) are important regulators of energy expenditure and adaptive thermogenesis, notably through their action in the brown adipose tissue (BAT). However, T3 acts in many other peripheral and central tissues which are also involved in energy expenditure. The general picture of how T3 regulates BAT thermogenesis is currently not fully established, notably due to the absence of extensive omics analyses and the lack of specific mice model. Here, we first used transcriptome and cistrome analyses to establish the list of T3/TR direct target genes in brown adipocytes. We then developed a novel model of transgenic mice, in which T3 signaling is specifically suppressed in brown adipocytes at adult stage. We addressed the capacity of these mice to mount a thermogenic response when challenged by either a cold exposure or a high-fat diet, and analyzed the associated changes in BAT transcriptome. We conclude that T3 plays a crucial role in the thermogenic response of the BAT, controlling the expression of genes involved in lipid and glucose metabolism and regulating BAT proliferation. The resulting picture provides an unprecedented view on the pathways by which T3 activates energy expenditure through an efficient adaptive thermogenesis in the BAT.

Data availability

The raw sequencing data and aligned read counts generated as part of this study has been deposited to the NCBI Sequence Read Archive. Accession number: GSE201136; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201136

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yanis Zekri

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    For correspondence
    yanis.zekri@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4925-4610
  2. Romain Guyot

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Inés Garteizgogeascoa Suñer

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence Canaple

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Amandine Gautier Stein

    Inserm, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Justine Vily Petit

    Inserm, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Denise Aubert

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Sabine Richard

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Frederic Flamant

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3360-2345
  10. Karine Gauthier

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Union's Horizon 2020 (825753)

  • Frederic Flamant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rauf Latif, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: All experiments were carried out in accordance with the European Community Council Directive of September 22, 2010 (2010/63/EU) regarding the protection of animals used for experimental and other scientific purposes. The research project was approved by a local animal care and use committee (C2EA015) and authorized by the French Ministry of Research.

Version history

  1. Received: July 19, 2022
  2. Preprint posted: August 6, 2022 (view preprint)
  3. Accepted: November 11, 2022
  4. Accepted Manuscript published: November 14, 2022 (version 1)
  5. Version of Record published: November 23, 2022 (version 2)

Copyright

© 2022, Zekri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,374
    views
  • 239
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yanis Zekri
  2. Romain Guyot
  3. Inés Garteizgogeascoa Suñer
  4. Laurence Canaple
  5. Amandine Gautier Stein
  6. Justine Vily Petit
  7. Denise Aubert
  8. Sabine Richard
  9. Frederic Flamant
  10. Karine Gauthier
(2022)
Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice
eLife 11:e81996.
https://doi.org/10.7554/eLife.81996

Share this article

https://doi.org/10.7554/eLife.81996

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Genetics and Genomics
    Can Hu, Xue-Ting Zhu ... Jin-Qiu Zhou
    Research Article

    Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker’s yeast Saccharomyces cerevisiae, the X- and Y’-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y’-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y’-elements) in telomere maintenance. Deletion of Y’-elements (SY12), X-elements (SY12XYΔ+Y), or both X- and Y’-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y’-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.