Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice

Abstract

Thyroid hormone (T3) and its nuclear receptors (TR) are important regulators of energy expenditure and adaptive thermogenesis, notably through their action in the brown adipose tissue (BAT). However, T3 acts in many other peripheral and central tissues which are also involved in energy expenditure. The general picture of how T3 regulates BAT thermogenesis is currently not fully established, notably due to the absence of extensive omics analyses and the lack of specific mice model. Here, we first used transcriptome and cistrome analyses to establish the list of T3/TR direct target genes in brown adipocytes. We then developed a novel model of transgenic mice, in which T3 signaling is specifically suppressed in brown adipocytes at adult stage. We addressed the capacity of these mice to mount a thermogenic response when challenged by either a cold exposure or a high-fat diet, and analyzed the associated changes in BAT transcriptome. We conclude that T3 plays a crucial role in the thermogenic response of the BAT, controlling the expression of genes involved in lipid and glucose metabolism and regulating BAT proliferation. The resulting picture provides an unprecedented view on the pathways by which T3 activates energy expenditure through an efficient adaptive thermogenesis in the BAT.

Data availability

The raw sequencing data and aligned read counts generated as part of this study has been deposited to the NCBI Sequence Read Archive. Accession number: GSE201136; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201136

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yanis Zekri

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    For correspondence
    yanis.zekri@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4925-4610
  2. Romain Guyot

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Inés Garteizgogeascoa Suñer

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence Canaple

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Amandine Gautier Stein

    Inserm, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Justine Vily Petit

    Inserm, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Denise Aubert

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Sabine Richard

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Frederic Flamant

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3360-2345
  10. Karine Gauthier

    Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Union's Horizon 2020 (825753)

  • Frederic Flamant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in accordance with the European Community Council Directive of September 22, 2010 (2010/63/EU) regarding the protection of animals used for experimental and other scientific purposes. The research project was approved by a local animal care and use committee (C2EA015) and authorized by the French Ministry of Research.

Reviewing Editor

  1. Rauf Latif, Icahn School of Medicine at Mount Sinai, United States

Version history

  1. Received: July 19, 2022
  2. Preprint posted: August 6, 2022 (view preprint)
  3. Accepted: November 11, 2022
  4. Accepted Manuscript published: November 14, 2022 (version 1)
  5. Version of Record published: November 23, 2022 (version 2)

Copyright

© 2022, Zekri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,285
    Page views
  • 225
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yanis Zekri
  2. Romain Guyot
  3. Inés Garteizgogeascoa Suñer
  4. Laurence Canaple
  5. Amandine Gautier Stein
  6. Justine Vily Petit
  7. Denise Aubert
  8. Sabine Richard
  9. Frederic Flamant
  10. Karine Gauthier
(2022)
Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice
eLife 11:e81996.
https://doi.org/10.7554/eLife.81996

Share this article

https://doi.org/10.7554/eLife.81996

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Thomas A Sasani, Aaron R Quinlan, Kelley Harris
    Research Article

    Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations – the frequencies of C>T, A>G, etc. – will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Ban Wang, Alexander L Starr, Hunter B Fraser
    Research Article

    Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells—the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.