Abstract

Amyloid-β precursor protein (APP) regulates neuronal activity through the release of secreted APP (sAPP) acting at cell-surface receptors. APP and sAPP were reported to bind to the extracellular sushi domain 1 (SD1) of GABAB receptors (GBRs). A 17 amino-acid peptide (APP17) derived from APP was sufficient for SD1 binding and shown to mimic the inhibitory effect of sAPP on neurotransmitter release and neuronal activity. The functional effects of APP17 and sAPP were similar to those of the GBR agonist baclofen and blocked by a GBR antagonist. These experiments led to the proposal that sAPP activates GBRs to exert its neuronal effects. However, whether APP17 and sAPP influence classical GBR signaling pathways in heterologous cells was not analyzed. Here, we confirm that APP17 binds to GBRs with nanomolar affinity. However, biochemical and electrophysiological experiments indicate that APP17 does not influence GBR activity in heterologous cells. Moreover, APP17 did not regulate synaptic GBR localization, GBR-activated K+ currents, neurotransmitter release or neuronal activity in vitro or in vivo. Our results show that APP17 is not a functional GBR ligand and indicate that sAPP exerts its neuronal effects through receptors other than GBRs.

Data availability

For all figures, numerical data that are represented in graphs are provided as source data excel files.

Article and author information

Author details

  1. Pascal Dominic Rem

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  2. Vita Sereikaite

    Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  3. Diego Fernández-Fernández

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1431-3705
  4. Sebastian Reinartz

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  5. Daniel Ulrich

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  6. Thorsten Fritzius

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3597-6623
  7. Luca Trovo

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  8. Salomé Roux

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6106-4863
  9. Ziyang Chen

    Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  10. Philippe Rondard

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738
  11. Jean-Philippe Pin

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    No competing interests declared.
  12. Jochen Schwenk

    BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3664-9795
  13. Bernd Fakler

    Institute of Physiology, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  14. Martin Gassmann

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  15. Tania Rinaldi Barkat

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8650-0986
  16. Kristian Strømgaard

    Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    Kristian Strømgaard, is a co-founder and a part time employee of Avilex Pharma.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2206-4737
  17. Bernhard Bettler

    Department of Biomedicine, University of Basel, Basel, Switzerland
    For correspondence
    bernhard.bettler@unibas.ch
    Competing interests
    Bernhard Bettler, is a member of the scientific advisory board of Addex Therapeutics, Geneva..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0842-8207

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A-152970)

  • Bernhard Bettler

Brain and Behavior Research Foundation (NARSAD Young Investigator Grant,30389)

  • Sebastian Reinartz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the veterinary office of the canton of Basel-Stadt, Switzerland (animal license numbers: 1897_31476 and 3004_34045).

Copyright

© 2023, Rem et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,288
    views
  • 208
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pascal Dominic Rem
  2. Vita Sereikaite
  3. Diego Fernández-Fernández
  4. Sebastian Reinartz
  5. Daniel Ulrich
  6. Thorsten Fritzius
  7. Luca Trovo
  8. Salomé Roux
  9. Ziyang Chen
  10. Philippe Rondard
  11. Jean-Philippe Pin
  12. Jochen Schwenk
  13. Bernd Fakler
  14. Martin Gassmann
  15. Tania Rinaldi Barkat
  16. Kristian Strømgaard
  17. Bernhard Bettler
(2023)
Soluble amyloid-β precursor peptide does not regulate GABAB receptor activity
eLife 12:e82082.
https://doi.org/10.7554/eLife.82082

Share this article

https://doi.org/10.7554/eLife.82082

Further reading

    1. Cell Biology
    2. Neuroscience
    Anne Drougard, Eric H Ma ... John Andrew Pospisilik
    Research Article

    Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within=0.36, LC1out=0.03; LC2within=0.34, LC2out=0.05; LC3within=0.35, LC3out=0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.