Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis and bone mass

  1. Kazuki Inoue
  2. Yongli Qin
  3. Yuhan Xia
  4. Jie Han
  5. Ruoxi Yuan
  6. Jun Sun
  7. Ren Xu
  8. Jean X Jiang
  9. Matthew B Greenblatt
  10. Baohong Zhao  Is a corresponding author
  1. Hospital for Special Surgery, United States
  2. First Affiliated Hospital of Xiamen University, China
  3. Weill Cornell, United States
  4. The University of Texas Health Science Center at San Antonio, United States

Abstract

M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis and pathological bone loss.

Data availability

The current manuscript does not contain sequencing data.The Source Data files for figures have been submitted.

The following previously published data sets were used

Article and author information

Author details

  1. Kazuki Inoue

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6305-9374
  2. Yongli Qin

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuhan Xia

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  4. Jie Han

    ICMRS Collaborating Center for Skeletal Stem Cells, First Affiliated Hospital of Xiamen University, Xiamen, China
    Competing interests
    No competing interests declared.
  5. Ruoxi Yuan

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  6. Jun Sun

    Pathology and Laboratory Medicine, Weill Cornell, New York, United States
    Competing interests
    No competing interests declared.
  7. Ren Xu

    ICMRS Collaborating Center for Skeletal Stem Cells, First Affiliated Hospital of Xiamen University, Xiamen, China
    Competing interests
    No competing interests declared.
  8. Jean X Jiang

    Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    Jean X Jiang, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2185-5716
  9. Matthew B Greenblatt

    Department of Pathology and Laboratory Medicine, Weill Cornell, New York, United States
    Competing interests
    No competing interests declared.
  10. Baohong Zhao

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    For correspondence
    zhaob@hss.edu
    Competing interests
    Baohong Zhao, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1286-0919

Funding

National Institutes of Health (AR078212,AR068970,AR071463)

  • Baohong Zhao

National Institutes of Health (AR075585)

  • Matthew B Greenblatt

National Institutes of Health (AG045040)

  • Jean X Jiang

Tow Foundation (Rosensweig Genomics Center at the Hospital for Special Surgery)

  • Baohong Zhao

Welch Foundation (AQ-1507)

  • Jean X Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were approved by Institutional Animal Care and Use Committee of the Hospital for Special Surgery and Weill Cornell Medical College (protocol numbers: 2016-0001 and 0004).

Copyright

© 2023, Inoue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,935
    views
  • 369
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazuki Inoue
  2. Yongli Qin
  3. Yuhan Xia
  4. Jie Han
  5. Ruoxi Yuan
  6. Jun Sun
  7. Ren Xu
  8. Jean X Jiang
  9. Matthew B Greenblatt
  10. Baohong Zhao
(2023)
Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis and bone mass
eLife 12:e82118.
https://doi.org/10.7554/eLife.82118

Share this article

https://doi.org/10.7554/eLife.82118

Further reading

    1. Medicine
    Mitsuru Sugimoto, Tadayuki Takagi ... Hiromasa Ohira
    Research Article

    Background:

    Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is a severe and deadly adverse event following ERCP. The ideal method for predicting PEP risk before ERCP has yet to be identified. We aimed to establish a simple PEP risk score model (SuPER model: Support for PEP Reduction) that can be applied before ERCP.

    Methods:

    This multicenter study enrolled 2074 patients who underwent ERCP. Among them, 1037 patients each were randomly assigned to the development and validation cohorts. In the development cohort, the risk score model for predicting PEP was established via logistic regression analysis. In the validation cohort, the performance of the model was assessed.

    Results:

    In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: –2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the pancreatic duct procedures (treated as ‘planned pancreatic duct procedures’ for calculating the score before ERCP). The PEP occurrence rate was 0% among low-risk patients (≤0 points), 5.5% among moderate-risk patients (1–3 points), and 20.2% among high-risk patients (4–7 points). In the validation cohort, the C statistic of the risk score model was 0.71 (95% CI 0.64–0.78), which was considered acceptable. The PEP risk classification (low, moderate, and high) was a significant predictive factor for PEP that was independent of intraprocedural PEP risk factors (precut sphincterotomy and inadvertent pancreatic duct cannulation) (OR 4.2, 95% CI 2.8–6.3; p<0.01).

    Conclusions:

    The PEP risk score allows an estimation of the risk of PEP prior to ERCP, regardless of whether the patient has undergone pancreatic duct procedures. This simple risk model, consisting of only five items, may aid in predicting and explaining the risk of PEP before ERCP and in preventing PEP by allowing selection of the appropriate expert endoscopist and useful PEP prophylaxes.

    Funding:

    No external funding was received for this work.

    1. Medicine
    Yao Li, Hui Xin ... Wei Zhang
    Research Article

    Estrogen significantly impacts women’s health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce. Therefore, an ovariectomized rat model was used to simulate postmenopausal conditions. Estrogen levels, blood pressure, and aortic tissue metabolomics were analyzed. Animal models were divided into Sham, OVX, and OVX +E groups. Serum estrogen levels, blood pressure measurements, and aortic tissue metabolomics analyses were performed using radioimmunoassay, UHPLC-Q-TOF, and bioinformatics techniques. Based on the above research content, we successfully established a correlation between low estrogen levels and postmenopausal hypertension in rats. Notable differences in blood pressure parameters and aortic tissue metabolites were observed across the experimental groups. Specifically, metabolites that were differentially expressed, particularly L-alpha-aminobutyric acid (L-AABA), showed potential as a biomarker for postmenopausal hypertension, potentially exerting a protective function through macrophage activation and vascular remodeling. Enrichment analysis revealed alterations in sugar metabolism pathways, such as the Warburg effect and glycolysis, indicating their involvement in postmenopausal hypertension. Overall, this current research provides insights into the metabolic changes associated with postmenopausal hypertension, highlighting the role of L-AABA and sugar metabolism reprogramming in aortic tissue. The findings suggest a potential link between low estrogen levels, macrophage function, and vascular remodeling in the pathogenesis of postmenopausal hypertension. Further investigations are needed to validate these findings and explore their clinical implications for postmenopausal women.