Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis and bone mass

  1. Kazuki Inoue
  2. Yongli Qin
  3. Yuhan Xia
  4. Jie Han
  5. Ruoxi Yuan
  6. Jun Sun
  7. Ren Xu
  8. Jean X Jiang
  9. Matthew B Greenblatt
  10. Baohong Zhao  Is a corresponding author
  1. Hospital for Special Surgery, United States
  2. First Affiliated Hospital of Xiamen University, China
  3. Weill Cornell, United States
  4. The University of Texas Health Science Center at San Antonio, United States

Abstract

M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis and pathological bone loss.

Data availability

The current manuscript does not contain sequencing data.The Source Data files for figures have been submitted.

The following previously published data sets were used

Article and author information

Author details

  1. Kazuki Inoue

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6305-9374
  2. Yongli Qin

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuhan Xia

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  4. Jie Han

    ICMRS Collaborating Center for Skeletal Stem Cells, First Affiliated Hospital of Xiamen University, Xiamen, China
    Competing interests
    No competing interests declared.
  5. Ruoxi Yuan

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  6. Jun Sun

    Pathology and Laboratory Medicine, Weill Cornell, New York, United States
    Competing interests
    No competing interests declared.
  7. Ren Xu

    ICMRS Collaborating Center for Skeletal Stem Cells, First Affiliated Hospital of Xiamen University, Xiamen, China
    Competing interests
    No competing interests declared.
  8. Jean X Jiang

    Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    Jean X Jiang, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2185-5716
  9. Matthew B Greenblatt

    Department of Pathology and Laboratory Medicine, Weill Cornell, New York, United States
    Competing interests
    No competing interests declared.
  10. Baohong Zhao

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, United States
    For correspondence
    zhaob@hss.edu
    Competing interests
    Baohong Zhao, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1286-0919

Funding

National Institutes of Health (AR078212,AR068970,AR071463)

  • Baohong Zhao

National Institutes of Health (AR075585)

  • Matthew B Greenblatt

National Institutes of Health (AG045040)

  • Jean X Jiang

Tow Foundation (Rosensweig Genomics Center at the Hospital for Special Surgery)

  • Baohong Zhao

Welch Foundation (AQ-1507)

  • Jean X Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were approved by Institutional Animal Care and Use Committee of the Hospital for Special Surgery and Weill Cornell Medical College (protocol numbers: 2016-0001 and 0004).

Copyright

© 2023, Inoue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,986
    views
  • 374
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazuki Inoue
  2. Yongli Qin
  3. Yuhan Xia
  4. Jie Han
  5. Ruoxi Yuan
  6. Jun Sun
  7. Ren Xu
  8. Jean X Jiang
  9. Matthew B Greenblatt
  10. Baohong Zhao
(2023)
Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis and bone mass
eLife 12:e82118.
https://doi.org/10.7554/eLife.82118

Share this article

https://doi.org/10.7554/eLife.82118

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.

    1. Medicine
    2. Neuroscience
    Hyeonyoung Min, Yale Y Yang, Yunlei Yang
    Research Article

    It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.