Generating colorblind-friendly scatter plots for single-cell data

  1. Tejas Guha
  2. Elana J Fertig  Is a corresponding author
  3. Atul Deshpande  Is a corresponding author
  1. University of Maryland, College Park, United States
  2. Johns Hopkins University, United States

Abstract

Reduced-dimension or spatial in situ scatter plots are widely employed in bioinformatics papers analyzing single-cell data to present phenomena or cell-conditions of interest in cell groups. When displaying these cell groups, color is frequently the only graphical cue used to differentiate them. However, as the complexity of the information presented in these visualizations increases, the usefulness of color as the only visual cue declines, especially for the sizable readership with color-vision deficiencies (CVDs). In this paper, we present scatterHatch, an R package that creates easily interpretable scatter plots by redundant coding of cell groups using colors as well as patterns. We give examples to demonstrate how the scatterHatch plots are more accessible than simple scatter plots when simulated for various types of CVDs.

Data availability

The current manuscript is a computational study, so no new data have been generated for this manuscript. The scripts used for generating the figures in this manuscript are available at https://github.com/FertigLab/scatterHatch-paper.

The following previously published data sets were used

Article and author information

Author details

  1. Tejas Guha

    Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, United States
    Competing interests
    No competing interests declared.
  2. Elana J Fertig

    Department of Oncology, Johns Hopkins University, Baltimore, United States
    For correspondence
    ejfertig@jhmi.edu
    Competing interests
    Elana J Fertig, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3204-342X
  3. Atul Deshpande

    Department of Oncology, Johns Hopkins University, Baltimore, United States
    For correspondence
    adeshpande@jhu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5144-6924

Funding

National Cancer Institute (U01CA253403)

  • Elana J Fertig

National Cancer Institute (U01CA212007)

  • Elana J Fertig

National Cancer Institute (P01CA247886)

  • Elana J Fertig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jungmin Choi, Korea University College of Medicine, Republic of Korea

Version history

  1. Preprint posted: October 7, 2021 (view preprint)
  2. Received: July 24, 2022
  3. Accepted: December 15, 2022
  4. Accepted Manuscript published: December 16, 2022 (version 1)
  5. Version of Record published: January 9, 2023 (version 2)

Copyright

© 2022, Guha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,165
    Page views
  • 266
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tejas Guha
  2. Elana J Fertig
  3. Atul Deshpande
(2022)
Generating colorblind-friendly scatter plots for single-cell data
eLife 11:e82128.
https://doi.org/10.7554/eLife.82128

Share this article

https://doi.org/10.7554/eLife.82128

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Thomas A Sasani, Aaron R Quinlan, Kelley Harris
    Research Article

    Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations – the frequencies of C>T, A>G, etc. – will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Ban Wang, Alexander L Starr, Hunter B Fraser
    Research Article

    Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells—the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.