Isometric spiracular scaling in scarab beetles: implications for diffusive and advective oxygen transport

  1. Julian M Wagner
  2. C. Jaco Klok
  3. Meghan E Duell
  4. John J Socha
  5. Guohua Cao
  6. Hao Gong
  7. Jon Fewell Harrison  Is a corresponding author
  1. Arizona State University, United States
  2. Virginia Tech, United States
  3. ShanghaiTech University, China
  4. Mayo Clinic, United States

Abstract

The scaling of respiratory structures has been hypothesized to be a major driving factor in the evolution of many aspects of animal physiology. Here we provide the first assessment of the scaling of the spiracles in insects using ten scarab beetle species differing 180x in mass, including some of the most massive extant insect species. Using X-ray microtomography, we measured the cross-sectional area and depth of all eight spiracles, enabling the calculation of their diffusive and advective capacities. Each of these metrics scaled with geometric isometry. Because diffusive capacities scale with lower slopes than metabolic rates, the largest beetles measured require 10-fold higher PO2 gradients across the spiracles to sustain metabolism by diffusion compared to the smallest species. Large beetles can exchange sufficient oxygen for resting metabolism by diffusion across the spiracles, but not during flight. In contrast, spiracular advective capacities scale similarly or more steeply than metabolic rates, so spiracular advective capacities should match or exceed respiratory demands in the largest beetles. These data illustrate a general principle of gas exchange: scaling of respiratory transport structures with geometric isometry diminishes the potential for diffusive gas exchange but enhances advective capacities; combining such structural scaling with muscle-driven ventilation allows larger animals to achieve high metabolic rates when active.

Data availability

All data are provided in the supplementary tables.

Article and author information

Author details

  1. Julian M Wagner

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. C. Jaco Klok

    School of Life Sciences, Arizona State University, Henderson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meghan E Duell

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John J Socha

    Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4465-1097
  5. Guohua Cao

    School of Biomedical Engineering, ShanghaiTech University, Shanghei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hao Gong

    Department of Radiology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jon Fewell Harrison

    School of Life Sciences, Arizona State University, Tempe, United States
    For correspondence
    j.harrison@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5223-216X

Funding

NSF (IOS 1122157)

  • Jon Fewell Harrison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. George H Perry, Pennsylvania State University, United States

Version history

  1. Preprint posted: April 8, 2022 (view preprint)
  2. Received: July 24, 2022
  3. Accepted: August 16, 2022
  4. Accepted Manuscript published: September 13, 2022 (version 1)
  5. Version of Record published: September 29, 2022 (version 2)
  6. Version of Record updated: September 30, 2022 (version 3)

Copyright

© 2022, Wagner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 595
    views
  • 121
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julian M Wagner
  2. C. Jaco Klok
  3. Meghan E Duell
  4. John J Socha
  5. Guohua Cao
  6. Hao Gong
  7. Jon Fewell Harrison
(2022)
Isometric spiracular scaling in scarab beetles: implications for diffusive and advective oxygen transport
eLife 11:e82129.
https://doi.org/10.7554/eLife.82129

Share this article

https://doi.org/10.7554/eLife.82129

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.

    1. Ecology
    2. Evolutionary Biology
    Chunxiao Li, Tao Deng ... Shiqi Wang
    Research Article

    The long-trunked elephantids underwent a significant evolutionary stage characterized by an exceptionally elongated mandible. The initial elongation and subsequent regression of the long mandible, along with its co-evolution with the trunk, present an intriguing issue that remains incompletely understood. Through comparative functional and eco-morphological investigations, as well as feeding preference analysis, we reconstructed the feeding behavior of major groups of longirostrine elephantiforms. In the Platybelodon clade, the rapid evolutionary changes observed in the narial region, strongly correlated with mandible and tusk characteristics, suggest a crucial evolutionary transition where feeding function shifted from the mandible to the trunk, allowing proboscideans to expand their niches to more open regions. This functional shift further resulted in elephantids relying solely on their trunks for feeding. Our research provides insights into how unique environmental pressures shape the extreme evolution of organs, particularly in large mammals that developed various peculiar adaptations during the late Cenozoic global cooling trends.