Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans

  1. Lucydalila Cedillo
  2. Fasih M Ahsan
  3. Sainan Li
  4. Nicole L Stuhr
  5. Yifei Zhou
  6. Yuyao Zhang
  7. Adebanjo Adedoja
  8. Luke M Murphy
  9. Armen Yerevanian
  10. Sinclair Emans
  11. Khoi Dao
  12. Zhaozhi Li
  13. Nicholas D Peterson
  14. Jeramie Watrous
  15. Mohit Jain
  16. Sudeshna Das
  17. Read Pukkila-Worley
  18. Sean P Curran
  19. Alexander A Soukas  Is a corresponding author
  1. Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States
  2. Broad Institute of Harvard and MIT, United States
  3. Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, United States
  4. Leonard Davis School of Gerontology, University of Southern California, United States
  5. Department of Medicine and Pharmacology, University of California San Diego, United States
  6. Biomedical Informatics Core, Massachusetts General Hospital and Harvard Medical Schoo, United States
  7. Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, United States
8 figures, 1 table and 2 additional files

Figures

Figure 1 with 2 supplements
Genes responsible for ether lipid biosynthesis are necessary for biguanide-induced lifespan extension.

(A) C. elegans ether lipid synthesis is catalyzed by three enzymes: fatty acyl reductase FARD-1, acyltransferase ACL-7, and alkylglycerone phosphate synthase ADS-1 (adapted from Figure 1 of Shi et …

Figure 1—figure supplement 1
Reduced function of genes responsible for ether lipid biosynthesis partially suppresses biguanide effects of growth and lifespan without affecting biguanide levels.

(A) RNA interference (RNAi) knockdown of fard-1 and acl-7 induces resistance to growth inhibition by 160 mM metformin treatment in C. elegans. *, p<0.05, by two-way ANOVA, n=2 biological replicates. …

Figure 1—figure supplement 2
The use of 5-fluoro-2′-deoxyuridine (FUdR) in lifespan analyses does not impact the observed epistases between the ether lipid machinery and biguanide-mediated lifespan extension.

Lifespans performed without the use of FUdR to inhibit progeny formation corroborate that a deficiency of ether lipid synthesis in fard-1 (A/D), acl-7 (B/E), and ads-1 (C/F) worm mutants negates …

Figure 2 with 2 supplements
Phenformin treatment of C. elegans leads to increased abundance of multiple alkyl and alkenyl ether lipids.

(A–B) Loss-of-function fard-1 mutants have significant reduction in 18:0 fatty alcohols derivatized from 18-carbon containing alkenyl ether lipids (dimethylacetal [DMA]) by gas chromatography/mass …

Figure 2—source data 1

Excel file containing raw, normalized, and normalized and log10 transformed mass spectrometry data for phosphatidylethanolamine containing ether lipids detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Data from three biological replicates are shown for molecules indicated for vehicle or 4.5 mM phenformin treatment, for four different genetic backgrounds: wild-type animals (N2, wt), BX10 (ads-1 mutant), BX259 (acl-7 mutant), and BX275 (fard-1 mutant). Compound identity for each detected lipid as well as raw, normalized, or transformed mass counts on each of three tabs. Note, several of the lipids were not uniformly detected or of low abundance, and thus were filtered by the MetaboAnalyst parameters used and not represented on the ‘Normalized’ and ‘Normalized-Log10 Transformed’ tabs.

https://cdn.elifesciences.org/articles/82210/elife-82210-fig2-data1-v1.xlsx
Figure 2—figure supplement 1
Biguanide treatment modulates abundance of fatty acids in C. elegans.

A comparison of the percent of the total fatty acid pool for 33 fatty acids shows that 7 fatty acids are significantly altered in phenformin-treated wild-type worms. n=3 biological replicates. *, p<0…

Figure 2—figure supplement 2
FARD-1::RFP localizes to intestinal lipid droplets and peroxisomes and is not positively regulated at the RNA or protein level by phenformin.

(A) Schematic representation of the C. elegans FARD-1::RFP overexpression reporter. (B) FARD-1::RFP (fard-1 oe1) exhibits intestinal expression in C. elegans. FARD-1 displays a cytoplasmic …

Peroxisomal protein import, fatty acid elongases, and fatty acid desaturases are required for the pro-longevity effects of biguanides.

(A–B) Knockdown of prx-5 (A) and prx-19 (B) by RNA interference (RNAi) eliminates or significantly suppresses phenformin-mediated lifespan extension. (C) Schematic representation of the mono- (MUFA) …

Figure 4 with 1 supplement
Genes involved in ether lipid biosynthesis are required for lifespan extension in multiple longevity paradigms.

(A–C) isp-1, raga-1, and eat-2 mutants display extended lifespan relative to wild-type animals that is dependent upon the three members of the ether lipid biosynthetic pathway. Results are …

Figure 4—figure supplement 1
Ether lipid biosynthetic genes are not necessary for daf-2-dependent lifespan extension.

daf-2 mutants display extended lifespan relative to wild-type animals. RNA interference (RNAi) knockdown of fard-1, acl-7, and ads-1 does not impact lifespan extension in these mutants. ns, p>0.05; …

Figure 5 with 1 supplement
fard-1 overexpression is sufficient to extend lifespan by modulating ether lipid synthesis.

(A–B) Two independently generated fard-1 overexpression (fard-1 oe1 and fard-1 oe2) transgenic strains exhibit lifespan extension that is not further extended by concomitant phenformin treatment. (C)…

Figure 5—figure supplement 1
fard-1 overexpression extends lifespan in a manner dependent upon ether lipid biosynthesis, and not apparently involving ferroptosis.

(A–B) RNA interference (RNAi) knockdown of fard-1 (A) and acl-7 (B) suppresses fard-1 overexpression(oe1)-associated lifespan extension. (C–E) Independent knockdown of glutathione peroxidases, gpx-1

Figure 6 with 3 supplements
Phenformin modulates systemic lipid metabolism through an ether lipid-skn-1 signaling relay.

(A) The number of intestinal, C1-BODIPY-C12 labeled lipid droplets are significantly lower in day 1 adult phenformin-treated animals versus vehicle (FARD-1::RFP reporter transgenic [fard-1 oe3] …

Figure 6—figure supplement 1
Biguanides do not activate gst-4 expression irrespective of bacterial diet.

(A–B) GFP quantification of gst-4p::NLS::GFP animals treated from hatching with vehicle, 50 mM metformin, or 4.5 mM phenformin on either OP50-1 seeded nematode growth media (NGM) plates or EV HT115 …

Figure 6—figure supplement 2
Disruption of bacterial growth and metabolism does not prevent biguanide-mediated induction of ether lipid synthesis.

(A) Bacterial titer assay measuring viability of OP50-1 treated with standard seeding conditions (live OP50-1), treated with 1% phosphate buffered saline (PBS) for 2 hr (mock-treated OP50-1 [2 hr]), …

Figure 6—figure supplement 3
Inactivation of ether lipid machinery disrupts biguanide-mediated lifespan extension independent of effects on bacterial growth or metabolism.

Lifespan analyses of wild-type (wt) or ads-1 mutant animals grown on live OP50-1 (A–B), mock-treated OP50-1 for 2 hr (C–D), or 1% paraformaldehyde (PFA)-treated OP50-1 for 2 hr (E–F) reveal that ads-…

Schematic representation for the role of the ether lipid biosynthetic machinery in multiple pro-longevity paradigms.

(A) Model of ether lipid action in biguanide-prompted lifespan extension. Activation of ether lipid biosynthesis leads to longevity-promoting activity of metabolic stress defenses downstream of the …

Author response image 1
Gain of function mutation in SKN-1 results in global depletion of free fatty acid levels and elevates ether lipid precursor alcohols.

(A) Quantification of total area under the curve (AUC) measurements for all identified free fatty acids (FFA) in wildtype (N2) and skn-1gf(lax188) animals at Adult Day 2 using fatty acid methyl …

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Escherichia coli)OP50-1Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00041971Standard laboratory stock
Strain, strain background (Escherichia coli)HT115(DE3)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00041079Background strain for RNAi clones utilized from Ahringer and Vidal Libraries
Strain, strain background (Caenorhabditis elegans)Bristol N2 (wt)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00000001Standard laboratory wild-type strain
Strain, strain background (Caenorhabditis elegans)fard-1(wa28) [G261D]Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00004025BX275
Strain, strain background (Caenorhabditis elegans)acl-7(wa20) [R234C]Caenorhabditis Genetics CenterRRID: WS-STRAIN:WBStrain00004024BX259
Strain, strain background (Caenorhabditis elegans)ads-1(wa3) [G454D]Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00004007BX10
Strain, strain background (Caenorhabditis elegans)daf-2(e1370)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00004309CB1370
Strain, strain background (Caenorhabditis elegans)isp-1(qm150)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00026672MQ989
Strain, strain background (Caenorhabditis elegans)raga-1(ok701)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00035849VC533
Strain, strain background (Caenorhabditis elegans)eat-2(da465)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00005463DA465
Strain, strain background (Caenorhabditis elegans)mgIs43[ges-1p::GFP::PTS1]Soukas LaboratoryN/AMGH48
Strain, strain background (Caenorhabditis elegans)skn-1(lax188)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00034420skn-1gf,
SPC168
Strain, strain background (Caenorhabditis elegans)agIs6[dod-24p::GFP]Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00004921CF3556
Strain, strain background (Caenorhabditis elegans)dvIs19[(pAF15)gst-4p::GFP::NLS]Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00005102CL2166
Strain, strain background (Caenorhabditis elegans)skn-1(zu135)Caenorhabditis Genetics CenterRRID: WB-STRAIN:WBStrain00007251skn-1lf, EU31
Genetic reagent (Caenorhabditis elegans)alxEx122[fard-1p::FARD-1::mRFP::HA unc-54 3'UTR myo-2p::GFP]This studyMGH471fard-1 (oe1)
Genetic reagent (Caenorhabditis elegans)alxEx135[fard-1p::FARD-1::mRFP::HA unc-54 3'UTR myo-2p::GFP]This studyMGH472fard-1 (oe2)
Genetic reagent (Caenorhabditis elegans)alxIs45[fard-1p::FARD-1::mRFP::HA::unc-54 3'UTR myo-2p::GFP]This studyMGH605fard-1 (oe3),
backcrossed into N2 8×
Genetic reagent (Caenorhabditis elegans)alxIs46[fard-1p::FARD-1::mRFP::HA::unc-54 3’UTR myo-2p::GFP]This studyMGH606fard-1 (oe4), backcrossed into N2 8×
Genetic reagent (Caenorhabditis elegans)mgIs43[ges-1p::GFP::PTS1]; alxEx122[fard-1p::FARD-1::mRFP::HA::unc-54 3’UTR myo-2p::GFP]This studyMGH607GFP::PTS1; FARD-1::RFP, prepared by crossing MGH48 into MGH471
Sequence-based reagent5-TGCATGCCTGCAGGTCGACTTTGACAAAAGTTCTGTTGCCG-3This studyAS-4524Forward primer used to generate fard-1 overexpression construct
Sequence-based reagent5’-TTTGGGTCCTTTGGCCAATCGCTTTTTTGAAGATACCGAGAATAATCC-3’This studyAS-4527Reverse primer used to generate fard-1 overexpression construct
Sequence-based reagent5’-TGCTGATCGTATGCAGAAGG-3’This studyact-1 FqRT-PCR Primer
Sequence-based reagent5’-TAGATCCTCCGATCCAGACG-3’This studyact-1 RqRT-PCR Primer
Sequence-based reagent5’-GTTCCCGTGTTCATCACTCAT-3’This studypmp-3 FqRT-PCR Primer
Sequence-based reagent5’-ACACCGTCGAGAAGCTGTAGA-3’This studypmp-3 RqRT-PCR Primer
Sequence-based reagent5’-ACAAGTCACCAATGGCTCCAC-3’This studyfard-1 FqRT-PCR Primer
Sequence-based reagent5’-GCTTTGGTCAGAGTGTAGGTG-3’This studyfard-1 RqRT-PCR Primer
Sequence-based reagent5’-cgatagtgtgtctgttgattgtga-3’This studyfard-1 F (Native 3’ UTR)qRT-PCR Primer
Sequence-based reagent5’-agttattgttgatgagagagtgcg-3’This studyfard-1 R (Native 3’ UTR)qRT-PCR Primer
Sequence-based reagent5’-GTTTATGGCTGGCGTGTTG-3’This studyacl-7 FqRT-PCR Primer
Sequence-based reagent5’-CGGAGAAGACAGCCCAGTAG-3’This studyacl-7 RqRT-PCR Primer
Sequence-based reagent5’-GCGATTAACAAGGACGGACA-3’This studyads-1 FqRT-PCR Primer
Sequence-based reagent5’-CGATGCCCAAGTAGTTCTCG-3’This studyads-1 RqRT-PCR Primer
Chemical compound, drugC1-BODIPY-C12 (green)InvitrogenCat#D-3823N/A
Chemical compound, drug5-fluoro-2′-deoxyuridine (FUdR)Fisher ScientificCat#F10705N/A
Chemical compound, drugMetformin hydrochlorideMilliporeSigmaCat#PHR1084N/A
Chemical compound, drugPhenformin hydrochlorideMilliporeSigmaCat#PHR1573N/A
Commercial assay or kitQuantitect Reverse Transcription KitQIAGENCat#205314N/A
Commercial assay or kitQuantitect SYBR Green PCR ReagentQIAGENCat#204145N/A
Chemical compound, drugLevamisoleMilliporeSigmaCat#L9756N/A
Software, algorithmOASIS2Structural Bioinformatics Laboratory, POSTECHhttps://sbi.postech.ac.kr/oasis2/surv/N/A
Software, algorithmMetaMorphMolecular Deviceshttps://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metamorph-microscopyN/A
Software, algorithmXcalibur (v4.1.31.9)Thermo Fisher ScientificCat#OPTON-30965N/A
Software, algorithmQualBrowser (v4.1.31.9)Thermo Fisher ScientificCat#XCALI-97617N/A
Software, algorithmMZmine (v2.36)Open SourceRRID: SCR_012040,
http://mzmine.github.io
N/A
Software, algorithmMetaboAnalyst (v5.0)N/Ahttps://www.metaboanalyst.caN/A
Software, algorithmCellProfiler (v4.2.1)Broad Institutehttps://cellprofiler.orgN/A
Software, algorithmPrism (v9.0)GraphPad by Dotmaticshttps://www.graphpad.com/N/A
Software, algorithmFiji/ImageJ2 (v2.13.1)NIHhttps://imagej.net/software/fiji/N/A

Additional files

Supplementary file 1

Tabular and survival data including three biological replicates (unless otherwise noted) are shown for lifespan experiments related to Figures 1 and 35, Figure 1—figure supplement 1, Figure 1—figure supplement 2, Figure 4—figure supplement 1, Figure 5—figure supplement 1, and Figure 6—figure supplement 3.

Data present a summary of the conditions tested which, if applicable, include: (1) drug treatment with vehicle control and 4.5 mM phenformin or 50 mM metformin and/or (2) RNAi treatment to knockdown expression of the specific denoted gene. The C. elegans strain, number of subjects, restricted mean (days), standard error, 95% confidence interval (CI), 95% median CI, and p-values for relevant comparisons are noted among all conditions. ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 by log-rank analysis.

https://cdn.elifesciences.org/articles/82210/elife-82210-supp1-v1.xlsx
MDAR checklist
https://cdn.elifesciences.org/articles/82210/elife-82210-mdarchecklist1-v1.docx

Download links