Caveolae couple mechanical stress to integrin recycling and activation

  1. Fidel-Nicolás Lolo
  2. Dácil María Pavón
  3. Araceli Grande
  4. Alberto Elósegui Artola
  5. Valeria Inés Segatori
  6. Sara Sánchez
  7. Xavier Trepat
  8. Pere Pere Roca-Cusachs
  9. Miguel Ángel del Pozo  Is a corresponding author
  1. Centro Nacional de Investigaciones Cardiovasculares, Spain
  2. Allergy Therapeutics S.L., Spain
  3. The Francis Crick Institute, United Kingdom
  4. Quilmes National University, Argentina
  5. Institute for Bioengineering of Catalonia, Spain

Abstract

Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active b1-integrin content on the surface of Cav1KO fibroblasts. FRAP analysis and endocytosis/recycling assays revealed that active b1-integrin is mostly endocytosed through the CLIC/GEEC pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven b1-integrin activation is lower in Cav1KO MEFs than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.

Data availability

Raw data of all figures is included as excel files

Article and author information

Author details

  1. Fidel-Nicolás Lolo

    Cell and developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1635-4770
  2. Dácil María Pavón

    Allergy Therapeutics S.L., Alcalá de Henares, Spain
    Competing interests
    Dácil María Pavón, is affiliated with Allergy Therapeutics S.L. The author has no financial interests to declare.
  3. Araceli Grande

    Structural Biology Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2619-5013
  4. Alberto Elósegui Artola

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Valeria Inés Segatori

    Quilmes National University, Buenos Aires, Argentina
    Competing interests
    No competing interests declared.
  6. Sara Sánchez

    Cell and developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
  7. Xavier Trepat

    Institute for Bioengineering of Catalonia, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7621-5214
  8. Pere Pere Roca-Cusachs

    Institute for Bioengineering of Catalonia, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6947-961X
  9. Miguel Ángel del Pozo

    Cell and developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    madelpozo@cnic.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9077-391X

Funding

European Union Horizon 2020 Research and Innovation Programme (Marie Sklodowska-Curie grant 641639)

  • Miguel Ángel del Pozo

Spanish Ministry of Economy, Industry and Competitiveness (SAF2011-25047,SAF2014-51876-R,SAF2017-83130-R,MINSEV1512-07-2016,CSD2009-0016)

  • Miguel Ángel del Pozo

Worldwide Cancer Research Foundation (#15 -0404)

  • Miguel Ángel del Pozo

Asociación Española Contra el Cáncer Foundation (PROYE20089DELP)

  • Miguel Ángel del Pozo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lolo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,328
    views
  • 390
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fidel-Nicolás Lolo
  2. Dácil María Pavón
  3. Araceli Grande
  4. Alberto Elósegui Artola
  5. Valeria Inés Segatori
  6. Sara Sánchez
  7. Xavier Trepat
  8. Pere Pere Roca-Cusachs
  9. Miguel Ángel del Pozo
(2022)
Caveolae couple mechanical stress to integrin recycling and activation
eLife 11:e82348.
https://doi.org/10.7554/eLife.82348

Share this article

https://doi.org/10.7554/eLife.82348

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.