Caveolae couple mechanical stress to integrin recycling and activation

  1. Fidel-Nicolás Lolo
  2. Dácil María Pavón
  3. Araceli Grande
  4. Alberto Elósegui Artola
  5. Valeria Inés Segatori
  6. Sara Sánchez
  7. Xavier Trepat
  8. Pere Pere Roca-Cusachs
  9. Miguel Ángel del Pozo  Is a corresponding author
  1. Centro Nacional de Investigaciones Cardiovasculares, Spain
  2. Allergy Therapeutics S.L., Spain
  3. The Francis Crick Institute, United Kingdom
  4. Quilmes National University, Argentina
  5. Institute for Bioengineering of Catalonia, Spain

Abstract

Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active b1-integrin content on the surface of Cav1KO fibroblasts. FRAP analysis and endocytosis/recycling assays revealed that active b1-integrin is mostly endocytosed through the CLIC/GEEC pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven b1-integrin activation is lower in Cav1KO MEFs than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.

Data availability

Raw data of all figures is included as excel files

Article and author information

Author details

  1. Fidel-Nicolás Lolo

    Cell and developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1635-4770
  2. Dácil María Pavón

    Allergy Therapeutics S.L., Alcalá de Henares, Spain
    Competing interests
    Dácil María Pavón, is affiliated with Allergy Therapeutics S.L. The author has no financial interests to declare.
  3. Araceli Grande

    Structural Biology Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2619-5013
  4. Alberto Elósegui Artola

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Valeria Inés Segatori

    Quilmes National University, Buenos Aires, Argentina
    Competing interests
    No competing interests declared.
  6. Sara Sánchez

    Cell and developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
  7. Xavier Trepat

    Institute for Bioengineering of Catalonia, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7621-5214
  8. Pere Pere Roca-Cusachs

    Institute for Bioengineering of Catalonia, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6947-961X
  9. Miguel Ángel del Pozo

    Cell and developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    madelpozo@cnic.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9077-391X

Funding

European Union Horizon 2020 Research and Innovation Programme (Marie Sklodowska-Curie grant 641639)

  • Miguel Ángel del Pozo

Spanish Ministry of Economy, Industry and Competitiveness (SAF2011-25047,SAF2014-51876-R,SAF2017-83130-R,MINSEV1512-07-2016,CSD2009-0016)

  • Miguel Ángel del Pozo

Worldwide Cancer Research Foundation (#15 -0404)

  • Miguel Ángel del Pozo

Asociación Española Contra el Cáncer Foundation (PROYE20089DELP)

  • Miguel Ángel del Pozo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lolo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,401
    views
  • 399
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fidel-Nicolás Lolo
  2. Dácil María Pavón
  3. Araceli Grande
  4. Alberto Elósegui Artola
  5. Valeria Inés Segatori
  6. Sara Sánchez
  7. Xavier Trepat
  8. Pere Pere Roca-Cusachs
  9. Miguel Ángel del Pozo
(2022)
Caveolae couple mechanical stress to integrin recycling and activation
eLife 11:e82348.
https://doi.org/10.7554/eLife.82348

Share this article

https://doi.org/10.7554/eLife.82348

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.