Functional cell types in the mouse superior colliculus

  1. Ya-tang Li  Is a corresponding author
  2. Markus Meister  Is a corresponding author
  1. Chinese Institute for Brain Research, China
  2. California Institute of Technology, United States

Abstract

The superior colliculus (SC) represents a major visual processing station in the mammalian brain that receives input from many types of retinal ganglion cells (RGCs). How many parallel channels exist in the SC, and what information does each encode? Here we recorded from mouse superficial SC neurons under a battery of visual stimuli including those used for classification of RGCs. An unsupervised clustering algorithm identified 24 functional types based on their visual responses. They fall into two groups: one that responds similarly to RGCs, and another with more diverse and specialized stimulus selectivity. The second group is dominant at greater depths, consistent with a vertical progression of signal processing in the SC. Cells of the same functional type tend to cluster near each other in anatomical space. Compared to the retina, the visual representation in the SC has lower dimensionality, consistent with a sifting process along the visual pathway.

Data availability

The data and code that produced the figures are available in a public Github repository https://github.com/yatangli/Li-CellTypes-2023

Article and author information

Author details

  1. Ya-tang Li

    Chinese Institute for Brain Research, Beijing, China
    For correspondence
    yatangli@cibr.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2763-1534
  2. Markus Meister

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    meister4@mac.com
    Competing interests
    Markus Meister, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-6506

Funding

National Institute of Neurological Disorders and Stroke (R01 NS111477)

  • Markus Meister

Simons Foundation (543015SPI)

  • Markus Meister

National Eye Institute (K99EY028640)

  • Ya-tang Li

Helen Hay Whitney Foundation

  • Ya-tang Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed according to relevant guidelines and approved by the Caltech IACUC (protocol 1656).

Copyright

© 2023, Li & Meister

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,300
    views
  • 293
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ya-tang Li
  2. Markus Meister
(2023)
Functional cell types in the mouse superior colliculus
eLife 12:e82367.
https://doi.org/10.7554/eLife.82367

Share this article

https://doi.org/10.7554/eLife.82367

Further reading

    1. Neuroscience
    Larissa Höfling, Klaudia P Szatko ... Thomas Euler
    Research Article

    The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes in visual context. We trained a convolutional neural network (CNN) model on large-scale functional recordings of RGC responses to natural mouse movies, and then used this model to search in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is being debated. We confirmed experimentally that these cells indeed responded very selectively to Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our work showcases how a combination of experiments with natural stimuli and computational modelling allows discovering novel types of stimulus selectivity and identifying their potential ethological relevance.

    1. Neuroscience
    Steven S Hou, Yuya Ikegawa ... Masato Maesako
    Tools and Resources

    γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.