Sex, strain and lateral differences in brain cytoarchitecture across a large mouse population

  1. David Elkind
  2. Hannah Hochgerner
  3. Etay Aloni
  4. Noam Shental  Is a corresponding author
  5. Amit Zeisel  Is a corresponding author
  1. Open University of Israel, Israel
  2. Technion - Israel Institute of Technology, Israel

Abstract

The mouse brain is by far the most intensively studied among mammalian brains, yet basic measures of its cytoarchitecture remain obscure. For example, quantifying cell numbers, and the interplay of sex-, strain-, and individual variability in cell density and volume is out of reach for many regions. The Allen Mouse Brain Connectivity project produces high-resolution full brain images of hundreds of brains. Although these were created for a different purpose, they reveal details of neuroanatomy and cytoarchitecture. Here, we used this population to systematically characterize cell density and volume for each anatomical unit in the mouse brain. We developed a deep neural network-based segmentation pipeline that uses the auto-fluorescence intensities of images to segment cell nuclei even within the densest regions, such as the dentate gyrus. We applied our pipeline to 507 brains of males and females from C57BL/6J and FVB.CD1 strains. Globally, we found that increased overall brain volume does not result in uniform expansion across all regions. Moreover, region-specific density changes are often negatively correlated with the volume of the region, therefore cell count does not scale linearly with volume. Many regions, including layer 2/3 across several cortical areas, showed distinct lateral bias. We identified strain-specific or sex-specific differences. For example, males tended to have more cells in extended amygdala and hypothalamic regions (MEA, BST, BLA, BMA, and LPO, AHN) while females had more cells in the orbital cortex (ORB). Yet, inter-individual variability was always greater than the effect size of a single qualifier. We provide the results of this analysis as an accessible resource for the community.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Tables related to values of data appear in the figures can be found in excel file.

The following previously published data sets were used

Article and author information

Author details

  1. David Elkind

    Department of Computer Science, Open University of Israel, Raanana, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Hannah Hochgerner

    Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Etay Aloni

    Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Noam Shental

    Department of Computer Science, Open University of Israel, Raanana, Israel
    For correspondence
    shental@openu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
  5. Amit Zeisel

    Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    amit.zeisel@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2424-9279

Funding

European Research Council (TYPEWIRE-852786)

  • Hannah Hochgerner
  • Etay Aloni
  • Amit Zeisel

Human Frontier Science Program (CDA-0039/2019-C)

  • Hannah Hochgerner
  • Amit Zeisel

Israel Science Foundation (2028912)

  • Hannah Hochgerner
  • Amit Zeisel

Swedish Brain Foundation

  • Hannah Hochgerner

Israel ministry of science, technology & space (3-16033)

  • Noam Shental

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Elkind et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,059
    views
  • 120
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Elkind
  2. Hannah Hochgerner
  3. Etay Aloni
  4. Noam Shental
  5. Amit Zeisel
(2023)
Sex, strain and lateral differences in brain cytoarchitecture across a large mouse population
eLife 12:e82376.
https://doi.org/10.7554/eLife.82376

Share this article

https://doi.org/10.7554/eLife.82376

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources Updated

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics. We present HILARy (high-precision inference of lineages in antibody repertoires), an efficient, fast, and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and dN/dS ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ritwik Maity, Xuepei Zhang ... Javier Sancho
    Research Article

    Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like Helicobacter pylori, the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity. However, the application of bulk omics approaches for unraveling drug molecular mechanisms of action is limited by their inability to discriminate between target-specific modifications and off-target effects. This study introduces a multi-omics method to overcome the existing limitation. For the first time, the Proteome Integral Solubility Alteration (PISA) assay is utilized in bacteria in the PISA-Express format to link proteome solubility with different and potentially immediate responses to drug treatment, enabling us the resolution to understand target-specific modifications and off-target effects. This study introduces a comprehensive method for understanding drug mechanisms and optimizing the development of multi-targeting antimicrobial therapies.