Cryo-EM structures of a LRRC8 chimera with native functional properties reveal heptameric assembly

  1. Hirohide Takahashi
  2. Toshiki Yamada
  3. Jerod S Denton
  4. Kevin Strange
  5. Erkan Karakas  Is a corresponding author
  1. Vanderbilt University, United States
  2. Vanderbilt University Medical Center, United States

Abstract

Volume-regulated anion channels (VRACs) mediate volume regulatory Cl- and organic solute efflux from vertebrate cells. VRACs are heteromeric assemblies of LRRC8A-E proteins with unknown stoichiometries. Homomeric LRRC8A and LRRC8D channels have a small pore, hexameric structure. However, these channels are either non-functional nor exhibit abnormal regulation and pharmacology, limiting their utility for structure-function analyses. We circumvented these limitations by developing novel homomeric LRRC8 chimeric channels with functional properties consistent with those of native VRAC/LRRC8 channels. We demonstrate here that the LRRC8C-LRRC8A(IL125) chimera comprising LRRC8C and 25 amino acids unique to the first intracellular loop (IL1) of LRRC8A has a heptameric structure like that of homologous pannexin channels. Unlike homomeric LRRC8A and LRRC8D channels, heptameric LRRC8C-LRRC8A(IL125) channels have a large-diameter pore similar to that estimated for native VRACs, exhibit normal DCPIB pharmacology, and have higher permeability to large organic anions. Lipid-like densities are located between LRRC8C-LRRC8A(IL125) subunits and occlude the channel pore. Our findings provide new insights into VRAC/LRRC8 channel structure and suggest that lipids may play important roles in channel gating and regulation.

Data availability

Cryo-EM maps and atomic coordinates are deposited to the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB) databases. The accession codes are EMD-27770 and 8DXN for class 1; EMD-27771 and 8DXO for class 2; EMD-27772 and 8DXP for class 3; EMD-27773 and 8DXQ for class 4; EMD-27774 and 8DXR for class 5.

Article and author information

Author details

  1. Hirohide Takahashi

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2553-8806
  2. Toshiki Yamada

    Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  3. Jerod S Denton

    Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  4. Kevin Strange

    Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    Kevin Strange, is cofounder and principal scientist of Revidia Therapeutics, Inc..
  5. Erkan Karakas

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
    For correspondence
    erkan.karakas@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6552-3185

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK51610)

  • Jerod S Denton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Takahashi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,614
    views
  • 288
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hirohide Takahashi
  2. Toshiki Yamada
  3. Jerod S Denton
  4. Kevin Strange
  5. Erkan Karakas
(2023)
Cryo-EM structures of a LRRC8 chimera with native functional properties reveal heptameric assembly
eLife 12:e82431.
https://doi.org/10.7554/eLife.82431

Share this article

https://doi.org/10.7554/eLife.82431

Further reading

    1. Structural Biology and Molecular Biophysics
    Shristi Pawnikar, Brenda S Magenheimer ... Yinglong Miao
    Research Article

    Polycystin-1 (PC1) is the protein product of the PKD1 gene whose mutation causes autosomal dominant Polycystic Kidney Disease (ADPKD). PC1 is an atypical G protein-coupled receptor (GPCR) with an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal and membrane-embedded C-terminal (CTF) fragments. Recently, activation of PC1 CTF signaling was shown to be regulated by a stalk tethered agonist (TA), resembling the mechanism observed for adhesion GPCRs. Here, synthetic peptides of the first 9- (p9), 17- (p17), and 21-residues (p21) of the PC1 stalk TA were shown to re-activate signaling by a stalkless CTF mutant in human cell culture assays. Novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) simulations elucidated binding conformations of p9, p17, and p21 and revealed multiple specific binding regions to the stalkless CTF. Peptide agonists binding to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of stalk TA-mediated PC1 CTF activation. Additional sequence coevolution analyses showed the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. These insights into the structural dynamic mechanism of PC1 activation by TA peptide agonists provide an in-depth understanding that will facilitate the development of therapeutics targeting PC1 for ADPKD treatment.

    1. Structural Biology and Molecular Biophysics
    Artem N Bonchuk, Konstantin I Balagurov ... Pavel G Georgiev
    Research Article Updated

    BTB (bric-a-brack, Tramtrack, and broad complex) is a diverse group of protein-protein interaction domains found within metazoan proteins. Transcription factors contain a dimerizing BTB subtype with a characteristic N-terminal extension. The Tramtrack group (TTK) is a distinct type of BTB domain, which can multimerize. Single-particle cryo-EM microscopy revealed that the TTK-type BTB domains assemble into a hexameric structure consisting of three canonical BTB dimers connected through a previously uncharacterized interface. We demonstrated that the TTK-type BTB domains are found only in Arthropods and have undergone lineage-specific expansion in modern insects. The Drosophila genome encodes 24 transcription factors with TTK-type BTB domains, whereas only four have non-TTK-type BTB domains. Yeast two-hybrid analysis revealed that the TTK-type BTB domains have an unusually broad potential for heteromeric associations presumably through a dimer-dimer interaction interface. Thus, the TTK-type BTB domains are a structurally and functionally distinct group of protein domains specific to Arthropodan transcription factors.