Abstract

The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided.

Article and author information

Author details

  1. Julia Takuno Hespanhol

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Enrique Sanchez-Limache

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1364-7527
  3. Gianlucca Gonçalves Nicastro

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Liam Mead

    Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Edgar Enrique Llontop

    Departamento de Bioquímica, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4910-9667
  6. Gustavo Chagas-Santos

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Chuck Shaker Farah

    Departamento de Bioquímica, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Robson Francisco de Souza

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5284-4630
  9. Rodrigo da Silva Galhardo

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5686-9704
  10. Andrew Lovering

    Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Ethel Bayer-Santos

    Departamento de Microbiologia, Universidade de São Paulo, Sao Paulo, Brazil
    For correspondence
    ebayersantos@usp.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3832-3449

Funding

Sao Paulo Research foundation (2016/09047-8)

  • Robson Francisco de Souza

FAPESP Fellowship (2018/04553-8)

  • Ethel Bayer-Santos

MIBTP Studentship

  • Liam Mead

Sao Paulo Research Foundation (2017/17303-7)

  • Chuck Shaker Farah

Sao Paulo Research Foundation (2017/02178-2)

  • Ethel Bayer-Santos

Welcome Trust (209437/Z/17/Z)

  • Andrew Lovering

FAPESP Fellowship (2018/25316-4)

  • Julia Takuno Hespanhol

FAPESP Fellowship (2019/22715-8)

  • Daniel Enrique Sanchez-Limache

FAPESP Fellowship (2021/03400-6)

  • Gianlucca Gonçalves Nicastro

FAPESP Fellowship (2019/12234-2)

  • Edgar Enrique Llontop

FAPESP Fellowship (2020/15389-4)

  • Gustavo Chagas-Santos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hespanhol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,683
    views
  • 477
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Takuno Hespanhol
  2. Daniel Enrique Sanchez-Limache
  3. Gianlucca Gonçalves Nicastro
  4. Liam Mead
  5. Edgar Enrique Llontop
  6. Gustavo Chagas-Santos
  7. Chuck Shaker Farah
  8. Robson Francisco de Souza
  9. Rodrigo da Silva Galhardo
  10. Andrew Lovering
  11. Ethel Bayer-Santos
(2022)
Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases
eLife 11:e82437.
https://doi.org/10.7554/eLife.82437

Share this article

https://doi.org/10.7554/eLife.82437

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.

    1. Microbiology and Infectious Disease
    David Duneau, Pierre DM Lafont ... Jean-Baptiste Ferdy
    Research Article

    How are some individuals surviving infections while others die? The answer lies in how infected individuals invest into controlling pathogen proliferation and mitigating damage, two strategies respectively called resistance and disease tolerance. Pathogen within-host dynamics (WHD), influenced by resistance, and its connection to host survival, determined by tolerance, decide the infection outcome. To grasp these intricate effects of resistance and tolerance, we used a deterministic theoretical model where pathogens interact with the immune system of a host. The model describes the positive and negative regulation of the immune response, consider the way damage accumulate during the infection and predicts WHD. When chronic, infections stabilize at a Set-Point Pathogen Load (SPPL). Our model predicts that this situation can be transient, the SPPL being then a predictor of life span which depends on initial condition (e.g. inoculum). When stable, the SPPL is rather diagnostic of non lethal chronic infections. In lethal infections, hosts die at a Pathogen Load Upon Death (PLUD) which is almost independent from the initial conditions. As the SPPL, the PLUD is affected by both resistance and tolerance but we demonstrate that it can be used in conjunction with mortality measurement to distinguish the effect of disease tolerance from that of resistance. We validate empirically this new approach, using Drosophila melanogaster and the pathogen Providencia rettgeri. We found that, as predicted by the model, hosts that were wounded or deficient of key antimicrobial peptides had a higher PLUD, while Catalase mutant hosts, likely to have a default in disease tolerance, had a lower PLUD.