Rostral and caudal BLA engage distinct circuits in the prelimbic and infralimbic PFC

  1. Kasra Manoocheri
  2. Adam G Carter  Is a corresponding author
  1. New York University, United States

Abstract

Connections from the basolateral amygdala (BLA) to medial prefrontal cortex (PFC) regulate memory and emotion and become disrupted in neuropsychiatric disorders. The diverse roles attributed to interactions between the BLA and PFC may reflect multiple circuits nested within a wider network. To examine these circuits, we first used retrograde and anterograde anatomy to show that the rostral BLA (rBLA) and caudal BLA (cBLA) differentially project to prelimbic (PL) and infralimbic (IL) subregions of the mouse PFC. Using ex vivo whole-cell recordings and optogenetics, we then assessed which neuronal subtypes are targeted, showing that rBLA preferentially drives layer 2 (L2) cortico-amygdalar (CA) neurons in PL, whereas cBLA drives layer 5 (L5) pyramidal tract (PT) neurons in IL. We next combined in vivo silicon probe recordings and optogenetics to confirm that cBLA mainly influences IL L5, whereas rBLA primarily activates PL L2, but also evokes polysynaptic activity in PL L5. Lastly, we used soma-tagged optogenetics to explore the local circuits linking superficial and deep layers of PL, showing how rBLA can engage L2 CA neurons to impact L5 PT neuron activity. Together, our findings delineate how subregions of the BLA target distinct networks within the PFC and differentially influence output from PL and IL.

Data availability

We have included all statistical tests and results in our Statistical Analysis supplemental file. We have included the data for figures in our Data supplemental file.

Article and author information

Author details

  1. Kasra Manoocheri

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam G Carter

    Center for Neural Science, New York University, New York, United States
    For correspondence
    adam.carter@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2095-3901

Funding

National Institute of Mental Health (R01 MH085974)

  • Adam G Carter

National Institute of Mental Health (T32 23 MH019524)

  • Kasra Manoocheri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures followed guidelines approved by the New York University Animal Welfare Committee (protocols 07-1281 and 18-1503).

Copyright

© 2022, Manoocheri & Carter

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,811
    views
  • 507
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kasra Manoocheri
  2. Adam G Carter
(2022)
Rostral and caudal BLA engage distinct circuits in the prelimbic and infralimbic PFC
eLife 11:e82688.
https://doi.org/10.7554/eLife.82688

Share this article

https://doi.org/10.7554/eLife.82688