An extracellular vesicle targeting ligand that binds to Arc proteins and facilitates Arc transport in vivo

  1. Peter H Lee  Is a corresponding author
  2. Michael Anaya
  3. Mark S Ladinsky
  4. Justin Reitsma
  5. Kai Zinn  Is a corresponding author
  1. California Institute of Technology, United States
  2. AbbVie, United States

Abstract

Communication between distant cells can be mediated by extracellular vesicles (EVs) that deliver proteins and RNAs to recipient cells. Little is known about how EVs are targeted to specific cell types. Here we identify the Drosophila cell-surface protein Stranded at second (Sas) as a targeting ligand for EVs. Full-length Sas is present in EV preparations from transfected Drosophila Schneider 2 (S2) cells. Sas is a binding partner for the Ptp10D receptor tyrosine phosphatase, and Sas-bearing EVs preferentially target to cells expressing Ptp10D. We used co-immunoprecipitation and peptide binding to show that the cytoplasmic domain (ICD) of Sas binds to dArc1 and mammalian Arc. dArc1 and Arc are related to retrotransposon Gag proteins. They form virus-like capsids which encapsulate Arc and other mRNAs and are transported between cells via EVs. The Sas ICD contains a motif required for dArc1 binding that is shared by the mammalian and Drosophila amyloid precursor protein (APP) orthologs, and the APP ICD also binds to mammalian Arc. Sas facilitates delivery of dArc1 capsids bearing dArc1 mRNA into distant Ptp10D-expressing recipient cells in vivo.

Data availability

Key data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Peter H Lee

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    hlee@caltech.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2411-6094
  2. Michael Anaya

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Mark S Ladinsky

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1036-3513
  4. Justin Reitsma

    AbbVie, North Chicago, United States
    Competing interests
    Justin Reitsma, is affiliated with AbbVie. The author has no other competing interests to declare.
  5. Kai Zinn

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    zinnk@caltech.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6706-5605

Funding

NINDS (NS28182)

  • Kai Zinn

NINDS (NS096509)

  • Kai Zinn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,351
    views
  • 172
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter H Lee
  2. Michael Anaya
  3. Mark S Ladinsky
  4. Justin Reitsma
  5. Kai Zinn
(2023)
An extracellular vesicle targeting ligand that binds to Arc proteins and facilitates Arc transport in vivo
eLife 12:e82874.
https://doi.org/10.7554/eLife.82874

Share this article

https://doi.org/10.7554/eLife.82874

Further reading

    1. Cell Biology
    2. Developmental Biology
    Jeet H Patel, Mary C Mullins
    Insight

    Disease-causing mutations in the signaling protein BMP4 impair its secretion, but only when it is made as a homodimer.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.