A cryogenic, coincident fluorescence, electron and ion beam microscope

  1. Daan B Boltje  Is a corresponding author
  2. Jacob P Hoogenboom  Is a corresponding author
  3. Arjen J Jakobi
  4. Grant J Jensen
  5. Caspar TH Jonker
  6. Max J Kaag
  7. Abraham J Koster
  8. Mart GF Last
  9. Cecilia de Agrela Pinto
  10. Jürgen M Plitzko
  11. Stefan Raunser
  12. Sebastian Tacke
  13. Zhexin Wang
  14. Ernest B van der Wee
  15. Roger Wepf
  16. Sander den Hoedt
  1. Delft University of Technology, Netherlands
  2. California Institute of Technology, United States
  3. Delmic B.V., Netherlands
  4. Leiden University Medical Center, Netherlands
  5. Max Planck Institute of Biochemistry, Germany
  6. Max Planck Institute of Molecular Physiology, Germany
  7. University of Queensland, Australia

Abstract

Cryogenic electron tomography (cryo-ET) combined with sub-tomogram averaging, allows in-situ visualization and structure determination of macromolecular complexes at sub-nanometre resolution. Cryogenic focused ion beam (cryo-FIB) micromachining is used to prepare a thin lamella-shaped sample out of a frozen-hydrated cell for cryo-ET imaging, but standard cryo-FIB fabrication is blind to the precise location of the structure or proteins of interest. Fluorescence-guided focused ion beam (FIB) milling at target locations requires multiple sample transfers prone to contamination, and relocation and registration accuracy is often insufficient for 3D targeting. Here, we present in-situ fluorescence microscopy-guided FIB fabrication of a frozen-hydrated lamella to address this problem: we built a coincident 3-beam cryogenic correlative microscope by retrofitting a compact cryogenic microcooler, custom positioning stage, and an inverted widefield fluorescence microscope (FM) on an existing focused ion-beam scanning electron microscope (FIB-SEM). We show FM controlled targeting at every milling step in the lamella fabrication process, validated with transmission electron microscope (TEM) tomogram reconstructions of the target regions. The ability to check the lamella during and after the milling process results in a higher success rate in the fabrication process and will increase the throughput of fabrication for lamellae suitable for high-resolution imaging.

Data availability

The data underlying the publication can be found at international data repository service 4TU.ResearchData, https://doi.org/10.4121/20787274

The following data sets were generated

Article and author information

Author details

  1. Daan B Boltje

    Delft University of Technology, Delft, Netherlands
    For correspondence
    boltje@delmic.com
    Competing interests
    Daan B Boltje, is an employee of Delmic B.V..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4881-4700
  2. Jacob P Hoogenboom

    Delft University of Technology, Delft, Netherlands
    For correspondence
    J.P.Hoogenboom@TUDelft.nl
    Competing interests
    Jacob P Hoogenboom, has a financial interest in Delmic B.V..
  3. Arjen J Jakobi

    Delft University of Technology, Delft, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7761-2027
  4. Grant J Jensen

    Biology and Bioengineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-4864
  5. Caspar TH Jonker

    Delmic B.V., Delft, Netherlands
    Competing interests
    Caspar TH Jonker, was an employee of Delmic B.V..
  6. Max J Kaag

    Delft University of Technology, Delft, Netherlands
    Competing interests
    No competing interests declared.
  7. Abraham J Koster

    Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1717-2549
  8. Mart GF Last

    Delmic B.V., Delft, Netherlands
    Competing interests
    Mart GF Last, was an employee of Delmic B.V..
  9. Cecilia de Agrela Pinto

    Delft University of Technology, Delft, Netherlands
    Competing interests
    No competing interests declared.
  10. Jürgen M Plitzko

    Department Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6402-8315
  11. Stefan Raunser

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9373-3016
  12. Sebastian Tacke

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  13. Zhexin Wang

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4256-1143
  14. Ernest B van der Wee

    Delft University of Technology, Delft, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0139-4019
  15. Roger Wepf

    Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  16. Sander den Hoedt

    Delmic B.V., Delft, Netherlands
    Competing interests
    Sander den Hoedt, has a financial interest in Delmic B.V..

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (TTW No 17152)

  • Jacob P Hoogenboom

National Institutes of Health (RO1 AI127401)

  • Grant J Jensen

European Commission (SME2 No 879673)

  • Sander den Hoedt

Eurostars (No E13008)

  • Stefan Raunser
  • Sander den Hoedt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Boltje et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,937
    views
  • 393
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daan B Boltje
  2. Jacob P Hoogenboom
  3. Arjen J Jakobi
  4. Grant J Jensen
  5. Caspar TH Jonker
  6. Max J Kaag
  7. Abraham J Koster
  8. Mart GF Last
  9. Cecilia de Agrela Pinto
  10. Jürgen M Plitzko
  11. Stefan Raunser
  12. Sebastian Tacke
  13. Zhexin Wang
  14. Ernest B van der Wee
  15. Roger Wepf
  16. Sander den Hoedt
(2022)
A cryogenic, coincident fluorescence, electron and ion beam microscope
eLife 11:e82891.
https://doi.org/10.7554/eLife.82891

Share this article

https://doi.org/10.7554/eLife.82891

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.