Polycomb repressive complex 1.1 coordinates homeostatic and emergency myelopoiesis

Abstract

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPa-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and β-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.

Data availability

RNA sequence, ChIP sequence and ATAC sequence data were deposited in the DDBJ (accession number DRA008518 and DRA013523).

The following data sets were generated

Article and author information

Author details

  1. Yaeko Nakajima-Takagi

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Motohiko Oshima

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Junichiro Takano

    Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuhei Koide

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Naoki Itokawa

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shun Uemura

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1520-6808
  7. Masayuki Yamashita

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9459-4329
  8. Shohei Andoh

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kazumasa Aoyama

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Yusuke Isshiki

    Department of Cellular and Molecular Medicine, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Daisuke Shinoda

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Atsunori Saraya

    Department of Cellular and Molecular Medicine, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Fumio Arai

    Department of Stem Cell Biology and Medicine, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Kiyoshi Yamaguchi

    Division of Clinical Genome Research, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Yoichi Furukawa

    Division of Clinical Genome Research, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0462-8631
  16. Haruhiko Koseki

    Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8424-5854
  17. Tomokatsu Ikawa

    Division of Immunobiology, Tokyo University of Science, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  18. Atsushi Iwama

    Division of Stem Cell and Molecular Medicine, University of Tokyo, Tokyo, Japan
    For correspondence
    03aiwama@ims.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9410-8992

Funding

Japan Society for the Promotion of Science (19H05653)

  • Atsushi Iwama

Japan Society for the Promotion of Science (20K08728)

  • Yaeko Nakajima-Takagi

Japan Society for the Promotion of Science (19H05746)

  • Atsushi Iwama

Japan Agency for Medical Research and Development (21zf0127003h0001)

  • Atsushi Iwama

Japan Agency for Medical Research and Development (JP223fa627001)

  • Atsushi Iwama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments using mice were performed in accordance with our institutional guidelines for the use of laboratory animals and approved by the Review Board for Animal Experiments of Chiba University (approval ID: 30-56) and the University of Tokyo (approval ID: PA18-03).

Copyright

© 2023, Nakajima-Takagi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,316
    views
  • 235
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yaeko Nakajima-Takagi
  2. Motohiko Oshima
  3. Junichiro Takano
  4. Shuhei Koide
  5. Naoki Itokawa
  6. Shun Uemura
  7. Masayuki Yamashita
  8. Shohei Andoh
  9. Kazumasa Aoyama
  10. Yusuke Isshiki
  11. Daisuke Shinoda
  12. Atsunori Saraya
  13. Fumio Arai
  14. Kiyoshi Yamaguchi
  15. Yoichi Furukawa
  16. Haruhiko Koseki
  17. Tomokatsu Ikawa
  18. Atsushi Iwama
(2023)
Polycomb repressive complex 1.1 coordinates homeostatic and emergency myelopoiesis
eLife 12:e83004.
https://doi.org/10.7554/eLife.83004

Share this article

https://doi.org/10.7554/eLife.83004

Further reading

    1. Stem Cells and Regenerative Medicine
    Tino Stauber, Greta Moschini ... Jess G Snedeker
    Research Article

    Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.