T cell deficiency precipitates antibody evasion and emergence of neurovirulent polyomavirus

  1. Matthew D Lauver
  2. Ge Jin
  3. Katelyn N Ayers
  4. Sarah N Carey
  5. Charles S Specht
  6. Catherine S Abendroth
  7. Aron E Lukacher  Is a corresponding author
  1. Pennsylvania State University, United States
  2. Penn State Milton S. Hershey Medical Center, United States

Abstract

JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a life-threatening brain disease in immunocompromised patients. Inherited and acquired T cell deficiencies are associated with PML. The incidence of PML is increasing with the introduction of new immunomodulatory agents, several of which target T cells or B cells. PML patients often carry mutations in the JCPyV VP1 capsid protein, which confer resistance to neutralizing VP1 antibodies (Ab). Polyomaviruses (PyV) are tightly species-specific; the absence of tractable animal models has handicapped understanding PyV pathogenesis. Using mouse polyomavirus (MuPyV), we found that T cell deficiency during persistent infection, in the setting of monospecific VP1 Ab, was required for outgrowth of VP1 Ab-escape viral variants. CD4 T cells were primarily responsible for limiting polyomavirus infection in the kidney, a major reservoir of persistent infection by both JCPyV and MuPyV, and checking emergence of these mutant viruses. T cells also provided a second line of defense by controlling the outgrowth of VP1 mutant viruses that evaded Ab neutralization. A virus with two capsid mutations, one conferring Ab-escape yet impaired infectivity and a second compensatory mutation, yielded a highly neurovirulent variant. These findings link T cell deficiency and evolution of Ab-escape polyomavirus VP1 variants with neuropathogenicity.

Data availability

All data files are uploaded as Source data files with this manuscript. Images are deposited with Dryad at (https://doi.org/10.5061/dryad.prr4xgxqj).

The following data sets were generated

Article and author information

Author details

  1. Matthew D Lauver

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7001-9730
  2. Ge Jin

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katelyn N Ayers

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6156-8685
  4. Sarah N Carey

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles S Specht

    Department of Pathology and Laboratory Medicine, Penn State Milton S. Hershey Medical Center, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine S Abendroth

    Department of Pathology and Laboratory Medicine, Penn State Milton S. Hershey Medical Center, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Aron E Lukacher

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    For correspondence
    alukacher@pennstatehealth.psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-2841

Funding

National Institutes of Health (5R01NS088367)

  • Aron E Lukacher

National Institutes of Health (5R01NS092662)

  • Aron E Lukacher

National Institutes of Health (R35NS127217)

  • Aron E Lukacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to an approved institutional animal care and use committee (IACUC) protocol (#PRAMS201447619) of The Pennsylvania State University.

Copyright

© 2022, Lauver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 632
    views
  • 98
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew D Lauver
  2. Ge Jin
  3. Katelyn N Ayers
  4. Sarah N Carey
  5. Charles S Specht
  6. Catherine S Abendroth
  7. Aron E Lukacher
(2022)
T cell deficiency precipitates antibody evasion and emergence of neurovirulent polyomavirus
eLife 11:e83030.
https://doi.org/10.7554/eLife.83030

Share this article

https://doi.org/10.7554/eLife.83030

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.