Neural population dynamics of computing with synaptic modulations

  1. Kyle Aitken  Is a corresponding author
  2. Stefan Mihalas
  1. Allen Institute, United States

Abstract

In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales. These modulations vary widely in underlying biological mechanisms as well as the timescales over which they occur, yet they all endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold temporal information over task-relevant timescales. Although networks with dynamical synapses have been explored previously, often said modulations are added to networks that also have recurrent connections and thus the computational capabilities and dynamical behavior contributed by the synapses remain unclear. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse dynamics to process temporal information, the multi-plasticity network (MPN). Unlike traditional RNNs, the weights in the MPN are modulated during inference. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this works demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modeling code is available on GitHub at: https://github.com/kaitken17/mpn (the link provided in the Methods section of the paper).

Article and author information

Author details

  1. Kyle Aitken

    MindScope Program, Allen Institute, Seattle, United States
    For correspondence
    kyle.aitken@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0207-5885
  2. Stefan Mihalas

    MindScope Program, Allen Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2629-7100

Funding

National Institutes of Health (F1DA055669)

  • Stefan Mihalas

National Institutes of Health (R01EB02981)

  • Stefan Mihalas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gianluigi Mongillo, Université Paris Descartes, France

Version history

  1. Preprint posted: June 30, 2022 (view preprint)
  2. Received: August 27, 2022
  3. Accepted: February 22, 2023
  4. Accepted Manuscript published: February 23, 2023 (version 1)
  5. Accepted Manuscript updated: March 23, 2023 (version 2)
  6. Version of Record published: April 4, 2023 (version 3)
  7. Version of Record updated: April 11, 2023 (version 4)

Copyright

© 2023, Aitken & Mihalas

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,509
    views
  • 254
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyle Aitken
  2. Stefan Mihalas
(2023)
Neural population dynamics of computing with synaptic modulations
eLife 12:e83035.
https://doi.org/10.7554/eLife.83035

Share this article

https://doi.org/10.7554/eLife.83035

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.