Obesity has always been considered a significant risk factor in OA progression, but the underlying mechanism of obesity-related inflammation in OA synovitis remains unclear. The present study found that synovial macrophages infiltrated and polarized in the obesity microenvironment and identified the essential role of M1 macrophages in impaired macrophage efferocytosis using pathology analysis of obesity-associated OA. The present study revealed that obese OA patients and Apoe-/- mice showed a more pronounced synovitis and enhanced macrophage infiltration in synovial tissue, accompanied by dominant M1 macrophage polarization. Obese OA mice had a more severe cartilage destruction and increased levels of synovial apoptotic cells than OA mice in the control group. Enhanced M1-polarized macrophages in obese synovium decreased growth arrest-specific 6 (GAS6) secretion, resulting in impaired macrophage efferocytosis in synovial apoptotic cells. Intracellular contents released by accumulated apoptotic cells further triggered an immune response and lead to a release of inflammatory factors, such as TNF-α, IL-1β, and IL-6, which induce chondrocyte homeostasis dysfunction in obese OA patients. Intra-articular injection of GAS6 restored the phagocytic capacity of macrophages, reduced the accumulation of local apoptotic cells, and decreased the levels of TUNEL- and caspase-3-positive cells, preserving cartilage thickness and preventing the progression of obesity-associated OA. Therefore, targeting macrophage associated efferocytosis or intra-articular injection of GAS6 is a potential therapeutic strategy for obesity-associated OA.
Sequencing data have been deposited in GEO under accession codes GSE53986. Source Data has been uploaded in Dryad , which was named after "Down-regulated GAS6 impairs synovial macrophage efferocytosis and promotes obesity-associated osteoarthritis" https://doi.org/10.5061/dryad.d2547d86d.)
This work were fully funded by National Natural Science Foundation of China (NSFC).
Animal experimentation: This study was performed in strict accordance with the recommendations in Chinese Laboratory animal-Guideline for ethical review of animal welfare (GB/T 35892-2018). The protocol was approved by the Southern Medical University Animal Care and Use Review Board(Permit Number: 2021- Ethical review-053). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.
Human subjects: Informed consent was obtained from all recruited patients and was identified by the ethics committee of the Third Affiliated Hospital of Southern Medical University.
© 2023, Yao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.