The SPARC complex defines RNAPII promoters in Trypanosoma brucei

  1. Desislava P Staneva
  2. Stefan Bresson
  3. Tatsiana Auchynnikava
  4. Christos Spanos
  5. Juri Rappsilber
  6. A Arockia Jeyaprakash
  7. David Tollervey
  8. Keith R Matthews  Is a corresponding author
  9. Robin C Allshire  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. The Francis Crick Institute, United Kingdom
  3. Technische Universität, Germany

Abstract

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.

Data availability

The sequencing data generated in this study can be accessed on the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE208037.The proteomics data generated in this study can be accessed on the Proteomics Identification Database (PRIDE; https://www.ebi.ac.uk/pride/) with accession number PXD036454.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Desislava P Staneva

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Bresson

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Tatsiana Auchynnikava

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Christos Spanos

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4376-8242
  5. Juri Rappsilber

    Institute of Biotechnology, Technische Universität, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. A Arockia Jeyaprakash

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David Tollervey

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2894-2772
  8. Keith R Matthews

    Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    keith.matthews@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0309-9184
  9. Robin C Allshire

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    robin.allshire@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8005-3625

Funding

Medical Research Council (MR/T04702X/1)

  • Desislava P Staneva
  • Keith R Matthews
  • Robin C Allshire

Wellcome Trust (22171)

  • Keith R Matthews

Wellcome Trust (200885)

  • Desislava P Staneva
  • Tatsiana Auchynnikava
  • Robin C Allshire

Wellcome Trust (224358)

  • Desislava P Staneva
  • Tatsiana Auchynnikava
  • Robin C Allshire

Wellcome Trust (222516)

  • Stefan Bresson
  • David Tollervey

Wellcome Trust (202811)

  • A Arockia Jeyaprakash

Wellcome Trust (108504)

  • Juri Rappsilber

Wellcome Trust (203149)

  • Christos Spanos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Staneva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 995
    views
  • 235
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Desislava P Staneva
  2. Stefan Bresson
  3. Tatsiana Auchynnikava
  4. Christos Spanos
  5. Juri Rappsilber
  6. A Arockia Jeyaprakash
  7. David Tollervey
  8. Keith R Matthews
  9. Robin C Allshire
(2022)
The SPARC complex defines RNAPII promoters in Trypanosoma brucei
eLife 11:e83135.
https://doi.org/10.7554/eLife.83135

Share this article

https://doi.org/10.7554/eLife.83135

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erik Toraason, Alina Salagean ... Diana E Libuda
    Research Article

    The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinate interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.

    1. Chromosomes and Gene Expression
    Xinyang Bing, Wenfan Ke ... James B Jaynes
    Research Article

    Two different models have been proposed to explain how the endpoints of chromatin looped domains (‘TADs’) in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the ‘loop-extrusion’ and the ‘boundary-pairing’ models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.