Glycolytic flux-signaling controls mouse embryo mesoderm development

  1. Hidenobu Miyazawa
  2. Marteinn T Snaebjornsson
  3. Nicole Prior
  4. Eleni Kafkia
  5. Henrik M Hammarén
  6. Nobuko Tsuchida-Straeten
  7. Kiran R Patil
  8. Martin Beck
  9. Alexander Aulehla  Is a corresponding author
  1. European Molecular Biology Laboratory, Germany
  2. German Cancer Research Center, Germany
  3. University of Southampton, United Kingdom
  4. University of Copenhagen, Denmark
  5. University Hospital Heidelberg, Germany
  6. University of Cambridge, United Kingdom
  7. Max Planck Institute of Biophysics, Germany

Abstract

How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.

Data availability

RNAseq data have been deposited to the European Nucleotide Archive (ENA) under the accession number PRJEB55095.

The following data sets were generated

Article and author information

Author details

  1. Hidenobu Miyazawa

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6164-5134
  2. Marteinn T Snaebjornsson

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicole Prior

    School of Biological Sciences, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2856-7052
  4. Eleni Kafkia

    Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Henrik M Hammarén

    Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8534-2530
  6. Nobuko Tsuchida-Straeten

    University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kiran R Patil

    MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6166-8640
  8. Martin Beck

    Department Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7397-1321
  9. Alexander Aulehla

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    aulehla@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3487-9239

Funding

European Molecular Biology Laboratory

  • Kiran R Patil
  • Martin Beck
  • Alexander Aulehla

European Molecular Biology Laboratory

  • Martin Beck

European Molecular Biology Laboratory

  • Alexander Aulehla

H2020 Marie Skłodowska-Curie Actions (664726)

  • Hidenobu Miyazawa

H2020 Marie Skłodowska-Curie Actions (664726)

  • Hidenobu Miyazawa
  • Henrik M Hammarén

Japan Society for the Promotion of Science

  • Hidenobu Miyazawa

Sigrid Juséliuksen Säätiö

  • Henrik M Hammarén

Deutsche Forschungsgemeinschaft (331351713)

  • Alexander Aulehla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua M Brickman, University of Copenhagen, Denmark

Ethics

Animal experimentation: All animals were housed in the EMBL animal facility under veterinarians' supervision and were treated following the guidelines of the European Commission, revised directive 2010/63/EU and AVMA guidelines 2007. All the animal experiments were approved by the EMBL Institutional Animal Care and Use Committee (project code: 21-001_HD_AA).

Version history

  1. Preprint posted: December 23, 2021 (view preprint)
  2. Received: September 7, 2022
  3. Accepted: November 6, 2022
  4. Accepted Manuscript published: December 5, 2022 (version 1)
  5. Version of Record published: December 21, 2022 (version 2)

Copyright

© 2022, Miyazawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,768
    Page views
  • 308
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hidenobu Miyazawa
  2. Marteinn T Snaebjornsson
  3. Nicole Prior
  4. Eleni Kafkia
  5. Henrik M Hammarén
  6. Nobuko Tsuchida-Straeten
  7. Kiran R Patil
  8. Martin Beck
  9. Alexander Aulehla
(2022)
Glycolytic flux-signaling controls mouse embryo mesoderm development
eLife 11:e83299.
https://doi.org/10.7554/eLife.83299

Share this article

https://doi.org/10.7554/eLife.83299

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.