Glycolytic flux-signaling controls mouse embryo mesoderm development

  1. Hidenobu Miyazawa
  2. Marteinn T Snaebjornsson
  3. Nicole Prior
  4. Eleni Kafkia
  5. Henrik M Hammarén
  6. Nobuko Tsuchida-Straeten
  7. Kiran R Patil
  8. Martin Beck
  9. Alexander Aulehla  Is a corresponding author
  1. European Molecular Biology Laboratory, Germany
  2. German Cancer Research Center, Germany
  3. University of Southampton, United Kingdom
  4. University of Copenhagen, Denmark
  5. University Hospital Heidelberg, Germany
  6. University of Cambridge, United Kingdom
  7. Max Planck Institute of Biophysics, Germany

Abstract

How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.

Data availability

RNAseq data have been deposited to the European Nucleotide Archive (ENA) under the accession number PRJEB55095.

The following data sets were generated

Article and author information

Author details

  1. Hidenobu Miyazawa

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6164-5134
  2. Marteinn T Snaebjornsson

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicole Prior

    School of Biological Sciences, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2856-7052
  4. Eleni Kafkia

    Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Henrik M Hammarén

    Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8534-2530
  6. Nobuko Tsuchida-Straeten

    University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kiran R Patil

    MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6166-8640
  8. Martin Beck

    Department Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7397-1321
  9. Alexander Aulehla

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    aulehla@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3487-9239

Funding

European Molecular Biology Laboratory

  • Kiran R Patil
  • Martin Beck
  • Alexander Aulehla

European Molecular Biology Laboratory

  • Martin Beck

European Molecular Biology Laboratory

  • Alexander Aulehla

H2020 Marie Skłodowska-Curie Actions (664726)

  • Hidenobu Miyazawa

H2020 Marie Skłodowska-Curie Actions (664726)

  • Hidenobu Miyazawa
  • Henrik M Hammarén

Japan Society for the Promotion of Science

  • Hidenobu Miyazawa

Sigrid Juséliuksen Säätiö

  • Henrik M Hammarén

Deutsche Forschungsgemeinschaft (331351713)

  • Alexander Aulehla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua M Brickman, University of Copenhagen, Denmark

Ethics

Animal experimentation: All animals were housed in the EMBL animal facility under veterinarians' supervision and were treated following the guidelines of the European Commission, revised directive 2010/63/EU and AVMA guidelines 2007. All the animal experiments were approved by the EMBL Institutional Animal Care and Use Committee (project code: 21-001_HD_AA).

Version history

  1. Preprint posted: December 23, 2021 (view preprint)
  2. Received: September 7, 2022
  3. Accepted: November 6, 2022
  4. Accepted Manuscript published: December 5, 2022 (version 1)
  5. Version of Record published: December 21, 2022 (version 2)

Copyright

© 2022, Miyazawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,907
    views
  • 326
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hidenobu Miyazawa
  2. Marteinn T Snaebjornsson
  3. Nicole Prior
  4. Eleni Kafkia
  5. Henrik M Hammarén
  6. Nobuko Tsuchida-Straeten
  7. Kiran R Patil
  8. Martin Beck
  9. Alexander Aulehla
(2022)
Glycolytic flux-signaling controls mouse embryo mesoderm development
eLife 11:e83299.
https://doi.org/10.7554/eLife.83299

Share this article

https://doi.org/10.7554/eLife.83299

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Vartika Sharma, Nalani Sachan ... Ashim Mukherjee
    Research Article

    The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.