A lncRNA identifies Irf8 enhancer element in negative feedback control of dendritic cell differentiation

Abstract

Transcription factors play a determining role in lineage commitment and cell differentiation. Interferon regulatory factor 8 (IRF8) is a lineage determining transcription factor in hematopoiesis and master regulator of dendritic cells (DC), an important immune cell for immunity and tolerance. IRF8 is prominently upregulated in DC development by autoactivation and controls both DC differentiation and function. However, it is unclear how Irf8 autoactivation is controlled and eventually limited. Here we identified a novel long non-coding RNA transcribed from the +32 kb enhancer downstream of Irf8 transcription start site and expressed specifically in mouse plasmacytoid DC (pDC), referred to as lncIrf8. The lncIrf8 locus interacts with the lrf8 promoter and shows differential epigenetic signatures in pDC versus classical DC type 1 (cDC1). Interestingly, a sequence element of the lncIrf8 promoter, but not lncIrf8 itself, is crucial for mouse pDC and cDC1 differentiation, and this sequence element confers feedback inhibition of Irf8 expression. Taken together, in DC development Irf8 autoactivation is first initiated by flanking enhancers and then second controlled by feedback inhibition through the lncIrf8 promoter element in the +32 kb enhancer. Our work reveals a previously unrecognized negative feedback loop of Irf8 that orchestrates its own expression and thereby controls DC differentiation.

Data availability

Sequencing data have been deposited in GEO under accession code GSE198651 and GenBank under accession codes ON134061 and ON134062.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Huaming Xu

    Department of Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhijian Li

    Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Chao-Chung Kuo

    Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Katrin Goetz

    Department of Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Look

    Department of Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcelo AS de Toldeo

    Department of Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristin Sere

    Department of Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ivan G Costa

    Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2890-8697
  9. Martin Zenke

    Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
    For correspondence
    martin.zenke@rwth-aachen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1107-3251

Funding

German Research Foundation

  • Martin Zenke

German Ministry of Science and Technology (Fibromap)

  • Ivan G Costa

Interdisciplinary Center for Clinical Research Aachen

  • Ivan G Costa
  • Martin Zenke

China Scholarship Council (202008080170)

  • Huaming Xu

CAPES-Alexander von Humboldt Foundation (99999.001703/2014-05)

  • Marcelo AS de Toldeo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the animal experiments were approved by the local authorities of the German Federal State North Rhine-Westphalia, Germany according to the German animal protection law (reference number 81-02.04.2018.A228).

Copyright

© 2023, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,086
    views
  • 151
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huaming Xu
  2. Zhijian Li
  3. Chao-Chung Kuo
  4. Katrin Goetz
  5. Thomas Look
  6. Marcelo AS de Toldeo
  7. Kristin Sere
  8. Ivan G Costa
  9. Martin Zenke
(2023)
A lncRNA identifies Irf8 enhancer element in negative feedback control of dendritic cell differentiation
eLife 12:e83342.
https://doi.org/10.7554/eLife.83342

Share this article

https://doi.org/10.7554/eLife.83342

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.

    1. Immunology and Inflammation
    Nincy Debeuf, Sahine Lameire ... Bart N Lambrecht
    Research Article

    Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors. Here, we exploited the rapid advances in single-cell sequencing and TCR repertoire analysis to select the best clones without hybridoma selection, and generated CORSET8 mice (CORona Spike Epitope specific CD8 T cell), carrying a TCR specific for the Spike protein of SARS-CoV-2. Implementing newly created DALI software for TCR repertoire analysis in single-cell analysis enabled the rapid selection of the ideal responder CD8 T cell clone, based on antigen reactivity, proliferation, and immunophenotype in vivo. Identified TCR sequences were inserted as synthetic DNA into an expression vector and transgenic CORSET8 donor mice were created. After immunization with Spike/CpG-motifs, mRNA vaccination or SARS-CoV-2 infection, CORSET8 T cells strongly proliferated and showed signs of T cell activation. Thus, a combination of TCR repertoire analysis and scRNA immunophenotyping allowed rapid selection of antigen-specific TCR sequences that can be used to generate TCR transgenic mice.