Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo

  1. Dennis May
  2. Sangwon Yun
  3. David G Gonzalez
  4. Sangbum Park
  5. Yanbo Chen
  6. Elizabeth Lathrop
  7. Biao Cai
  8. Tianchi Xin
  9. Hongyu Zhao
  10. Siyuan Wang
  11. Lauren E Gonzalez  Is a corresponding author
  12. Katie Cockburn  Is a corresponding author
  13. Valentina Greco  Is a corresponding author
  1. Yale University, United States
  2. Michigan State University, United States
  3. McGill University, Canada

Abstract

Stem cell differentiation requires dramatic changes in gene expression and global remodeling of chromatin architecture. How and when chromatin remodels relative to the transcriptional, behavioral, and morphological changes during differentiation remain unclear, particularly in an intact tissue context. Here, we develop a quantitative pipeline which leverages fluorescently-tagged histones and longitudinal imaging to track large-scale chromatin compaction changes within individual cells in a live mouse. Applying this pipeline to epidermal stem cells, we reveal that cell-to-cell chromatin compaction heterogeneity within the stem cell compartment emerges independent of cell cycle status, and instead is reflective of differentiation status. Chromatin compaction state gradually transitions over days as differentiating cells exit the stem cell compartment. Moreover, establishing live imaging of Keratin-10 (K10) nascent RNA, which marks the onset of stem cell differentiation, we find that Keratin-10 transcription is highly dynamic and largely precedes the global chromatin compaction changes associated with differentiation. Together, these analyses reveal that stem cell differentiation involves dynamic transcriptional states and gradual chromatin rearrangement.

Data availability

All coding scripts and source datasheets for figure quantifications are made accessible through the Dryad data repository: https://doi.org/10.5061/dryad.5hqbzkh94. Representative raw imaging data are accessible through the same link and full datasets available upon request with no restrictions (due to size) by contacting VG. Source datasheets are included in supplemental information.

Article and author information

Author details

  1. Dennis May

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sangwon Yun

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David G Gonzalez

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sangbum Park

    Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanbo Chen

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth Lathrop

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Biao Cai

    Department of Biostatistics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tianchi Xin

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongyu Zhao

    Department of Biostatistics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Siyuan Wang

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6550-4064
  11. Lauren E Gonzalez

    Department of Genetics, Yale University, New Haven, United States
    For correspondence
    lauren.e.gonzalez@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Katie Cockburn

    Department of Biochemistry, McGill University, Montreal, Canada
    For correspondence
    katie.cockburn@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
  13. Valentina Greco

    Department of Genetics, Yale University, New Haven, United States
    For correspondence
    valentina.greco@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6492-4603

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (1R01AR063663-01)

  • Valentina Greco

National Institute of Arthritis and Musculoskeletal and Skin Diseases (1R01AR067755-01A1)

  • Valentina Greco

National Institute on Aging (1DP1AG066590-01)

  • Valentina Greco

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR072668)

  • Valentina Greco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animal subjects were performed under the approval of the Institutional Animal Care and Use Committee (IACUC) of the Yale School of Medicine (Protocol #2021-11303). All live imaging was performed under 1-2% isoflurane, and ever effort was made to minimize suffering.

Copyright

© 2023, May et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,861
    views
  • 492
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dennis May
  2. Sangwon Yun
  3. David G Gonzalez
  4. Sangbum Park
  5. Yanbo Chen
  6. Elizabeth Lathrop
  7. Biao Cai
  8. Tianchi Xin
  9. Hongyu Zhao
  10. Siyuan Wang
  11. Lauren E Gonzalez
  12. Katie Cockburn
  13. Valentina Greco
(2023)
Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo
eLife 12:e83444.
https://doi.org/10.7554/eLife.83444

Share this article

https://doi.org/10.7554/eLife.83444

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Desiree Böck, Maria Wilhelm ... Gerald Schwank
    Research Article

    Parkinson’s disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model. Here, we devised an adenine base editing strategy to downregulate PTBP1 in astrocytes and neurons in a chemically-induced PD mouse model. While PTBP1 downregulation in astrocytes had no effect, PTBP1 downregulation in neurons of the striatum resulted in the expression of the DAN marker tyrosine hydroxylase (TH) in non-dividing neurons, which was associated with an increase in striatal dopamine concentrations and a rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis using multiplexed iterative immunofluorescence imaging further revealed that most of these TH-positive cells co-expressed the dopaminergic marker DAT and the pan-neuronal marker NEUN, with the majority of these triple-positive cells being classified as mature GABAergic neurons. Additional research is needed to fully elucidate the molecular mechanisms underlying the expression of the observed markers and understand how the formation of these cells contributes to the rescue of spontaneous motor behaviors. Nevertheless, our findings support a model where downregulation of neuronal, but not astrocytic, PTBP1 can mitigate symptoms in PD mice.