Histological E-data registration in rodent brain spaces

  1. Jingyi Guo Fuglstad  Is a corresponding author
  2. Pearl Saldanha
  3. Jacopo Paglia
  4. Jonathan R Whitlock  Is a corresponding author
  1. Norwegian University of Science and Technology, Norway

Abstract

Recording technologies for rodents have seen huge advances in the last decade, allowing users to sample thousands of neurons simultaneously from multiple brain regions. This has prompted the need for digital tool kits to aid in curating anatomical data, however, existing tools either provide limited functionalities or require users to be proficient in coding to use them. To address this we created HERBS (Histological E-data Registration in rodent Brain Spaces), a comprehensive new tool for rodent users that offers a broad range of functionalities through a user-friendly graphical user interface. Prior to experiments, HERBS can be used to plan coordinates for implanting electrodes, targeting viral injections or tracers. After experiments, users can register recording electrode locations (e.g. Neuropixels, tetrodes), viral expression or other anatomical features, and visualize the results in 2D or 3D. Additionally, HERBS can delineate labeling from multiple injections across tissue sections and obtain individual cell counts.Regional delineations in HERBS are based either on annotated 3D volumes from the Waxholm Space Atlas of the Sprague Dawley Rat Brain or the Allen Mouse Brain Atlas, though HERBS can work with compatible volume atlases from any species users wish to install. HERBS allows users to scroll through the digital brain atlases and provides custom-angle slice cuts through the volumes, and supports free-transformation of tissue sections to atlas slices. Furthermore, HERBS allows users to reconstruct a 3D brain mesh with tissue from individual animals. HERBS is a multi-platform open-source Python package that is available on PyPI and GitHub, and is compatible with Windows, macOS and Linux operating systems.

Data availability

The software described in this manuscript is an open-source software written completely in Python 3.8.HERBS is fully supported by Windows, macOS and Linux. Source code, HERBS Cookbook and documentation are available on the Whitlock group Github page: https://github.com/Whitlock-Group/HERBS .The Waxholm Space rat brain atlas files can be found here from the NITRC website: https://www.nitrc.org/projects/whs-sd-atlas.The Allen Mouse Brain Atlas software and wiki are freely available at: https://github.com/cortex-lab/allenCCF.

Article and author information

Author details

  1. Jingyi Guo Fuglstad

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    jingyi.guo@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
  2. Pearl Saldanha

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6749-8240
  3. Jacopo Paglia

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan R Whitlock

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    jonathan.whitlock@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2642-8737

Funding

Norges Forskningsråd (300709)

  • Jonathan R Whitlock

Norges Forskningsråd (223262)

  • Jonathan R Whitlock

Norges Forskningsråd (197467)

  • Jonathan R Whitlock

Kavli Foundation

  • Jonathan R Whitlock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the Norwegian Animal Welfare Act and the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. All procedures were approved by the Norwegian Food Safety Authority (Mattilsynet; protocol IDs 27175 and 25094). All tissue for in-house testing came from adult (>15wk) Long-Evans hooded rats. Detailed steps of the surgical preparation and post-operative care are described in Mimica et al. 2018 (doi:10.1126/science.aau2013).

Copyright

© 2023, Fuglstad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,687
    views
  • 237
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingyi Guo Fuglstad
  2. Pearl Saldanha
  3. Jacopo Paglia
  4. Jonathan R Whitlock
(2023)
Histological E-data registration in rodent brain spaces
eLife 12:e83496.
https://doi.org/10.7554/eLife.83496

Share this article

https://doi.org/10.7554/eLife.83496

Further reading

    1. Neuroscience
    Matthew A Churgin, Danylo O Lavrentovich ... Benjamin L de Bivort
    Research Article

    Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical origins of this individuality. Here, we demonstrate a neural correlate of Drosophila odor preference behavior in the olfactory sensory periphery. Namely, idiosyncratic calcium responses in projection neuron (PN) dendrites and densities of the presynaptic protein Bruchpilot in olfactory receptor neuron (ORN) axon terminals correlate with individual preferences in a choice between two aversive odorants. The ORN-PN synapse appears to be a locus of individuality where microscale variation gives rise to idiosyncratic behavior. Simulating microscale stochasticity in ORN-PN synapses of a 3062 neuron model of the antennal lobe recapitulates patterns of variation in PN calcium responses matching experiments. Conversely, stochasticity in other compartments of this circuit does not recapitulate those patterns. Our results demonstrate how physiological and microscale structural circuit variations can give rise to individual behavior, even when genetics and environment are held constant.

    1. Neuroscience
    Martina Held, Rituja S Bisen ... Jan M Ache
    Research Article

    Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila – a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based ‘intrinsic pharmacology’ approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.