Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoes
Abstract
The globally invasive mosquito subspecies Aedes aegypti aegypti is a highly effective vector of human arboviruses, in part because it specializes in biting humans and breeding in human habitats. Recent work suggests that specialization first arose as an adaptation to long, hot dry seasons in the West African Sahel, where Ae. aegypti is forced to rely on human-stored water for breeding. However, rainfall patterns in this region have changed dramatically over the past 10-20 thousand years, and we do not yet know exactly when specialization occurred. Here we use whole-genome cross-coalescent analysis to date the emergence of human specialist populations in the Sahel and thus further probe the climate hypothesis. Importantly, we take advantage of the known migration of human-specialist populations out of Africa during the Atlantic Slave Trade to calibrate the coalescent clock and thus obtain a more precise estimate of the older evolutionary event than would otherwise be possible. We find that human-specialist mosquitoes diverged rapidly from ecological generalists approximately 5,000 years ago, which corresponds to the end of the African Humid Period-a time when the Sahara dried and water stored by humans became a uniquely stable, aquatic niche in the Sahel. We also use population genomic analyses to date a previously observed influx of human-specialist alleles into major West African cities, where mosquitoes tend to be more attracted to humans than in nearby rural populations regardless of climate. In this case, the characteristic length of tracts of human-specialist ancestry present on a generalist genetic background in Kumasi, Ghana and Ouagadougou, Burkina Faso suggests the change in behavior occurred during rapid urbanization over the last 20-40 years. Taken together, we show that the timing and ecological context of two previously observed shifts towards human biting in Ae. aegypti differ; climate was likely the original driver, but urbanization has become increasingly important in recent decades. Understanding the changing relationship between mosquitoes and humans over time is critical for predicting and managing burdens of mosquito-borne disease.
Data availability
Scripts and processed data are available at github.com/noahrose/aaeg-evol-hist. Raw genomic data are available in the NCBI SRA at accession PRJNA602495. Phasing reference panel is available at doi:10.5061/dryad.2bvq83btk.
-
Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoesDryad Digital Repository, doi:10.5061/dryad.2bvq83btk.
Article and author information
Author details
Funding
Helen Hay Whitney Foundation
- Noah H Rose
New York Stem Cell Foundation
- Carolyn S McBride
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Rose et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Genetics and Genomics
Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.
-
- Evolutionary Biology
- Genetics and Genomics
Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.