Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoes

  1. Noah H Rose  Is a corresponding author
  2. Athanase Badolo
  3. Massamba Sylla
  4. Jewelna Akorli
  5. Sampson Otoo
  6. Andrea Gloria-Soria
  7. Jeffrey R Powell
  8. Bradley J White
  9. Jacob E Crawford
  10. Carolyn S McBride  Is a corresponding author
  1. Princeton University, United States
  2. Université Joseph Ki-Zerbo, Burkina Faso
  3. Université du Sine Saloum El-Hâdj Ibrahima NIASS, Senegal
  4. University of Ghana, Ghana
  5. Connecticut Agricultural Experiment Station, United States
  6. Yale University, United States
  7. Verily Life Sciences, United States

Abstract

The globally invasive mosquito subspecies Aedes aegypti aegypti is a highly effective vector of human arboviruses, in part because it specializes in biting humans and breeding in human habitats. Recent work suggests that specialization first arose as an adaptation to long, hot dry seasons in the West African Sahel, where Ae. aegypti is forced to rely on human-stored water for breeding. However, rainfall patterns in this region have changed dramatically over the past 10-20 thousand years, and we do not yet know exactly when specialization occurred. Here we use whole-genome cross-coalescent analysis to date the emergence of human specialist populations in the Sahel and thus further probe the climate hypothesis. Importantly, we take advantage of the known migration of human-specialist populations out of Africa during the Atlantic Slave Trade to calibrate the coalescent clock and thus obtain a more precise estimate of the older evolutionary event than would otherwise be possible. We find that human-specialist mosquitoes diverged rapidly from ecological generalists approximately 5,000 years ago, which corresponds to the end of the African Humid Period-a time when the Sahara dried and water stored by humans became a uniquely stable, aquatic niche in the Sahel. We also use population genomic analyses to date a previously observed influx of human-specialist alleles into major West African cities, where mosquitoes tend to be more attracted to humans than in nearby rural populations regardless of climate. In this case, the characteristic length of tracts of human-specialist ancestry present on a generalist genetic background in Kumasi, Ghana and Ouagadougou, Burkina Faso suggests the change in behavior occurred during rapid urbanization over the last 20-40 years. Taken together, we show that the timing and ecological context of two previously observed shifts towards human biting in Ae. aegypti differ; climate was likely the original driver, but urbanization has become increasingly important in recent decades. Understanding the changing relationship between mosquitoes and humans over time is critical for predicting and managing burdens of mosquito-borne disease.

Data availability

Scripts and processed data are available at github.com/noahrose/aaeg-evol-hist. Raw genomic data are available in the NCBI SRA at accession PRJNA602495. Phasing reference panel is available at doi:10.5061/dryad.2bvq83btk.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Noah H Rose

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    noahr@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7129-4753
  2. Athanase Badolo

    Laboratory of Fundamental and Applied Entomology, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6652-4240
  3. Massamba Sylla

    Department of Livestock Sciences and Techniques, Université du Sine Saloum El-Hâdj Ibrahima NIASS, Kaffrine, Senegal
    Competing interests
    No competing interests declared.
  4. Jewelna Akorli

    Department of Parasitology, University of Ghana, Accra, Ghana
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3972-0860
  5. Sampson Otoo

    Department of Parasitology, University of Ghana, Accra, Ghana
    Competing interests
    No competing interests declared.
  6. Andrea Gloria-Soria

    Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5401-3988
  7. Jeffrey R Powell

    Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Bradley J White

    Verily Life Sciences, South San Francisco, United States
    Competing interests
    Bradley J White, is affiliated with Verily Life Sciences. The author has no financial interests to declare..
  9. Jacob E Crawford

    Verily Life Sciences, South San Francisco, United States
    Competing interests
    Jacob E Crawford, is affiliated with Verily Life Sciences. The author has no financial interests to declare..
  10. Carolyn S McBride

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    csm7@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8898-1768

Funding

Helen Hay Whitney Foundation

  • Noah H Rose

New York Stem Cell Foundation

  • Carolyn S McBride

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Rose et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,108
    views
  • 427
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah H Rose
  2. Athanase Badolo
  3. Massamba Sylla
  4. Jewelna Akorli
  5. Sampson Otoo
  6. Andrea Gloria-Soria
  7. Jeffrey R Powell
  8. Bradley J White
  9. Jacob E Crawford
  10. Carolyn S McBride
(2023)
Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoes
eLife 12:e83524.
https://doi.org/10.7554/eLife.83524

Share this article

https://doi.org/10.7554/eLife.83524

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.