GABABR silencing of nerve terminals

  1. Daniel Charles Cook
  2. Timothy Aidan Ryan  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. Weill Cornell Medical College, Norway

Abstract

Control of neurotransmission efficacy is central to theories of how the brain computes and stores information. Presynaptic G-protein coupled receptors (GPCRs) are critical in this problem as they locally influence synaptic strength and can operate on a wide range of time scales. Among the mechanisms by which GPCRs impact neurotransmission is by inhibiting voltage-gated calcium (Ca2+) influx in the active zone. Here, using quantitative analysis of both single bouton Ca2+ influx and exocytosis, we uncovered an unexpected non-linear relationship between the magnitude of action potential driven Ca2+ influx and the concentration of external Ca2+ ([Ca2+]e). We find that this unexpected relationship is leveraged by GPCR signaling when operating at the nominal physiological set point for [Ca2+]e, 1.2 mM, to achieve complete silencing of nerve terminals. These data imply that the information throughput in neural circuits can be readily modulated in an all-or none fashion at the single synapse level when operating at the physiological set point.

Data availability

All data generated or analyzed during this study is included in the manuscript and supporting file; Source Data has been uploaded onto Dryad (doi:10.5061/dryad.1zcrjdfw0) and customized code has been uploaded to Github (https://github.com/taryan2020/ImageJ.git).

The following data sets were generated
    1. Ryan TA
    2. Cook D
    (2022) Supporting Data
    Dryad Digital Repository, doi:10.5061/dryad.1zcrjdfw0.

Article and author information

Author details

  1. Daniel Charles Cook

    Department of Anesthesiology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy Aidan Ryan

    Department of Biochemistry, Weill Cornell Medical College, New York, Norway
    For correspondence
    taryan@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2533-9548

Funding

NINDS (NS036942)

  • Timothy Aidan Ryan

NIGMS (GM148935)

  • Daniel Charles Cook

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving animals were performed in accordance with protocols approved by the Weill Cornell Medicine Institutional Animal Care and Use Committee (IACUC protocol 0601-450A)

Copyright

© 2023, Cook & Ryan

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,233
    views
  • 251
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Charles Cook
  2. Timothy Aidan Ryan
(2023)
GABABR silencing of nerve terminals
eLife 12:e83530.
https://doi.org/10.7554/eLife.83530

Share this article

https://doi.org/10.7554/eLife.83530

Further reading

    1. Neuroscience
    Merlin Monzel, Pitshaporn Leelaarporn ... Cornelia McCormick
    Research Article

    Aphantasia refers to reduced or absent visual imagery. While most of us can readily recall decade-old personal experiences (autobiographical memories, AM) with vivid mental images, there is a dearth of information about whether the loss of visual imagery in aphantasics affects their AM retrieval. The hippocampus is thought to be a crucial hub in a brain-wide network underlying AM. One important question is whether this network, especially the connectivity of the hippocampus, is altered in aphantasia. In the current study, we tested 14 congenital aphantasics and 16 demographically matched controls in an AM fMRI task to investigate how key brain regions (i.e. hippocampus and visual-perceptual cortices) interact with each other during AM re-experiencing. All participants were interviewed regarding their autobiographical memory to examine their episodic and semantic recall of specific events. Aphantasics reported more difficulties in recalling AM, were less confident about their memories, and described less internal and emotional details than controls. Neurally, aphantasics displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In addition, controls showed strong negative functional connectivity between the hippocampus and the visual cortex during AM and resting-state functional connectivity between these two brain structures predicted better visualization skills. Our results indicate that visual mental imagery plays an important role in detail-rich vivid AM, and that this type of cognitive function is supported by the functional connection between the hippocampus and the visual-perceptual cortex.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Alfonso Aguilera, Marta Nieto
    Insight

    A tailored cocktail of genes can reprogram a subset of progenitors to no longer produce glial cells and instead develop into neurons involved in motor control.