Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin-beta receptor signaling.

  1. Xing Feng
  2. Ruifeng Sun
  3. Moonyoung Lee
  4. Xinyue Chen
  5. Shangqin Guo
  6. Huimin Geng
  7. Marcus Müschen
  8. Jungmin Choi  Is a corresponding author
  9. Joao Pedro Pereira  Is a corresponding author
  1. Yale University, United States
  2. Korea University, Republic of Korea
  3. University of California, San Francisco, United States

Abstract

Acute lymphoblastic and myeloblastic leukemias (ALL and AML) have been known to modify the bone marrow microenvironment and disrupt non-malignant hematopoiesis. However, the molecular mechanisms driving these alterations remain poorly defined. Using mouse models of ALL and AML, here we show that leukemic cells turn-off lymphopoiesis and erythropoiesis shortly after colonizing the bone marrow. ALL and AML cells express lymphotoxin-a1b2 and activate LTbR signaling in mesenchymal stem cells (MSCs), which turns off IL7 production and prevents non-malignant lymphopoiesis. We show that the DNA damage response pathway and CXCR4 signaling promote lymphotoxin-a1b2 expression in leukemic cells. Genetic or pharmacologic disruption of LTbR signaling in MSCs restores lymphopoiesis but not erythropoiesis, reduces leukemic cell growth, and significantly extends the survival of transplant recipients. Similarly, CXCR4 blocking also prevents leukemia-induced IL7 downregulation, and inhibits leukemia growth. These studies demonstrate that acute leukemias exploit physiological mechanisms governing hematopoietic output as a strategy for gaining competitive advantage.

Data availability

Accession number to RNA expression data were deposited in NCBI (GSE221243)

The following data sets were generated

Article and author information

Author details

  1. Xing Feng

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Ruifeng Sun

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Moonyoung Lee

    Department of Biomedical Sciences, Korea University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Xinyue Chen

    Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8288-7685
  5. Shangqin Guo

    Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1157-0423
  6. Huimin Geng

    Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Marcus Müschen

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Jungmin Choi

    Department of Biomedical Sciences, Korea University, Seoul, Republic of Korea
    For correspondence
    jungminchoi@korea.ac.kr
    Competing interests
    Jungmin Choi, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8614-0973
  9. Joao Pedro Pereira

    Department of Immunobiology, Yale University, New Haven, United States
    For correspondence
    joao.pereira@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5694-4938

Funding

NIH Office of the Director (R01AI113040)

  • Joao Pedro Pereira

NIH Office of the Director (R21AI133060)

  • Joao Pedro Pereira

NIH Office of the Director (R35CA197628)

  • Marcus Müschen

NIH Office of the Director (R01AI164692)

  • Marcus Müschen

NIH Office of the Director (R21AI146648)

  • Marcus Müschen

NIH Office of the Director (T32 DK007356)

  • Xing Feng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Simón Méndez-Ferrer, University of Cambridge, United Kingdom

Ethics

Animal experimentation: All mice were maintained under specific pathogen-free conditions at the Yale Animal Resources Center and were used according to the protocol approved by the Yale University Institutional Animal Care and Use Committee. (2022-11377).

Version history

  1. Received: September 17, 2022
  2. Preprint posted: September 28, 2022 (view preprint)
  3. Accepted: March 10, 2023
  4. Accepted Manuscript published: March 13, 2023 (version 1)
  5. Version of Record published: March 27, 2023 (version 2)

Copyright

© 2023, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 738
    views
  • 143
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xing Feng
  2. Ruifeng Sun
  3. Moonyoung Lee
  4. Xinyue Chen
  5. Shangqin Guo
  6. Huimin Geng
  7. Marcus Müschen
  8. Jungmin Choi
  9. Joao Pedro Pereira
(2023)
Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin-beta receptor signaling.
eLife 12:e83533.
https://doi.org/10.7554/eLife.83533

Share this article

https://doi.org/10.7554/eLife.83533

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.

    1. Immunology and Inflammation
    Hee Young Kim, Yeon Jun Kang ... Won-Woo Lee
    Research Article

    Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.