B cell receptor induced IL-10 production from neonatal mouse CD19+CD43- cells depends on STAT5 mediated IL-6 secretion

  1. Jiro Sakai
  2. Jiyeon Yang
  3. Chao-Kai Chou
  4. Wells W Wu
  5. Mustafa Akkoyunlu  Is a corresponding author
  1. United States Food and Drug Administration, United States

Abstract

Newborns are unable to reach the adult-level humoral immune response partly due to the potent immunoregulatory role of IL-10. Increased IL-10 production by neonatal B cells has been attributed to the larger population of IL-10-producting CD43+ B-1 cells in neonates. Here, we show that neonatal mouse CD43- non-B-1 cells also produce substantial amounts of IL-10 following B cell antigen receptor (BCR) activation. In neonatal mouse CD43- non-B-1 cells, BCR engagement activated STAT5 under the control of phosphorylated forms of signaling molecules Syk, Btk, PKC, FAK and Rac1. Neonatal STAT5 activation led to IL-6 production, which in turn was responsible for IL-10 production in an autocrine/paracrine fashion through the activation of STAT3. In addition to the increased IL-6 production in response to BCR stimulation, elevated expression of IL-6Rα expression in neonatal B cells rendered them highly susceptible to IL-6 mediated STAT3 phosphorylation and IL-10 production. Finally, IL-10 secreted from neonatal mouse CD43- non-B-1 cells was sufficient to inhibit TNF-α secretion by macrophages. Our results unveil a distinct mechanism of IL-6-dependent IL-10 production in BCR-stimulated neonatal CD19+CD43- B cells.

Data availability

Sequencing data have been deposited in GEO under accession code GSE200955

The following data sets were generated

Article and author information

Author details

  1. Jiro Sakai

    Laboratory of Bacterial Polysaccharides, United States Food and Drug Administration, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiyeon Yang

    Laboratory of Bacterial Polysaccharides, United States Food and Drug Administration, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chao-Kai Chou

    Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wells W Wu

    Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mustafa Akkoyunlu

    Laboratory of Bacterial Polysaccharides, United States Food and Drug Administration, Silver Spring, United States
    For correspondence
    Mustafa.Akkoyunlu@fda.hhs.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9958-4031

Funding

No external funding was received for this work.

Ethics

Animal experimentation: The mouse experiments described in this study were performed in accordance with the US Food and Drug Administration/Center for Biologics Evaluation and Research Institutional Animal Care and Use Committee guidelines (permit 2002-31 and 2017-45).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,534
    views
  • 158
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiro Sakai
  2. Jiyeon Yang
  3. Chao-Kai Chou
  4. Wells W Wu
  5. Mustafa Akkoyunlu
(2023)
B cell receptor induced IL-10 production from neonatal mouse CD19+CD43- cells depends on STAT5 mediated IL-6 secretion
eLife 12:e83561.
https://doi.org/10.7554/eLife.83561

Share this article

https://doi.org/10.7554/eLife.83561

Further reading

    1. Immunology and Inflammation
    Jyotsna, Binayak Sarkar ... Rajesh S Gokhale
    Research Article

    Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Rekha R Rapaka
    Insight

    By altering which peptide antigens are presented to CD4+ T cells, adjuvants affect the specificity of the immune response.